--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: ea595059-4b96-46bc-a7e0-4ff32a51f33a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml adapter: lora base_model: defog/sqlcoder-7b-2 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d8496a7f70699cf6_train_data.json ds_type: json format: custom path: /workspace/input_data/d8496a7f70699cf6_train_data.json type: field_input: Authors field_instruction: Title field_output: Abstract format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: jssky/ea595059-4b96-46bc-a7e0-4ff32a51f33a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/d8496a7f70699cf6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8af403f3-6c2a-4bc3-b116-4d1af988a3ee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8af403f3-6c2a-4bc3-b116-4d1af988a3ee warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# ea595059-4b96-46bc-a7e0-4ff32a51f33a This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 560 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8896 | 0.25 | 140 | 1.4710 | | 1.0757 | 0.5 | 280 | 1.4440 | | 1.7619 | 0.75 | 420 | 1.4376 | | 1.6353 | 1.0 | 560 | 1.4419 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3