--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: jrtec-distilroberta-base-mrpc-glue-omar-espejel results: - task: name: Text Classification type: text-classification dataset: name: datasetX type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8161764705882353 - name: F1 type: f1 value: 0.8747913188647747 --- # jrtec-distilroberta-base-mrpc-glue-omar-espejel This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.4901 - Accuracy: 0.8162 - F1: 0.8748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4845 | 1.09 | 500 | 0.4901 | 0.8162 | 0.8748 | | 0.3706 | 2.18 | 1000 | 0.6421 | 0.8162 | 0.8691 | | 0.2003 | 3.27 | 1500 | 0.9711 | 0.8162 | 0.8760 | | 0.1281 | 4.36 | 2000 | 0.8224 | 0.8480 | 0.8893 | | 0.0717 | 5.45 | 2500 | 1.1803 | 0.8113 | 0.8511 | | 0.0344 | 6.54 | 3000 | 1.1759 | 0.8480 | 0.8935 | | 0.0277 | 7.63 | 3500 | 1.2140 | 0.8456 | 0.8927 | | 0.0212 | 8.71 | 4000 | 1.0895 | 0.8554 | 0.8974 | | 0.0071 | 9.8 | 4500 | 1.1849 | 0.8554 | 0.8991 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1