jonra1993 commited on
Commit
bcd8375
·
1 Parent(s): e260cb3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: jrtec-distilroberta-base-mrpc-glue-omar-espejel
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: glue
18
+ type: glue
19
+ args: mrpc
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.8774509803921569
24
+ - name: F1
25
+ type: f1
26
+ value: 0.9137931034482758
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # jrtec-distilroberta-base-mrpc-glue-omar-espejel
33
+
34
+ This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 1.0468
37
+ - Accuracy: 0.8775
38
+ - F1: 0.9138
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 5e-05
58
+ - train_batch_size: 8
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 10
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
69
+ | 0.2883 | 1.09 | 500 | 1.0351 | 0.8333 | 0.8790 |
70
+ | 0.3128 | 2.18 | 1000 | 0.7217 | 0.8407 | 0.8812 |
71
+ | 0.1607 | 3.27 | 1500 | 0.9991 | 0.8480 | 0.8946 |
72
+ | 0.1 | 4.36 | 2000 | 1.0454 | 0.8456 | 0.8869 |
73
+ | 0.051 | 5.45 | 2500 | 1.0003 | 0.8824 | 0.9184 |
74
+ | 0.037 | 6.54 | 3000 | 1.1195 | 0.8456 | 0.8948 |
75
+ | 0.028 | 7.63 | 3500 | 1.0448 | 0.8725 | 0.9091 |
76
+ | 0.0189 | 8.71 | 4000 | 1.0478 | 0.8725 | 0.9107 |
77
+ | 0.0099 | 9.8 | 4500 | 1.0468 | 0.8775 | 0.9138 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.20.1
83
+ - Pytorch 1.11.0
84
+ - Datasets 2.1.0
85
+ - Tokenizers 0.12.1