|
import streamlit as st |
|
from utils import PrepProcesor, columns |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import joblib |
|
|
|
model = joblib.load('xgbpipe.joblib') |
|
st.title('Will you survive if you were among Titanic passengers or not :ship:') |
|
|
|
passengerid = st.text_input("Input Passenger ID", '8585') |
|
pclass = st.selectbox("Choose class", [1,2,3]) |
|
name = st.text_input("Input Passenger Name", 'Soheil Tehranipour') |
|
sex = st.select_slider("Choose sex", ['male','female']) |
|
age = st.slider("Choose age",0,100) |
|
sibsp = st.slider("Choose siblings",0,10) |
|
parch = st.slider("Choose parch",0,10) |
|
ticket = st.text_input("Input Ticket Number", "8585") |
|
fare = st.number_input("Input Fare Price", 0,1000) |
|
cabin = st.text_input("Input Cabin", "C52") |
|
embarked = st.select_slider("Did they Embark?", ['S','C','Q']) |
|
|
|
def predict(): |
|
row = np.array([passengerid,pclass,name,sex,age,sibsp,parch,ticket,fare,cabin,embarked]) |
|
X = pd.DataFrame([row], columns = columns) |
|
prediction = model.predict(X) |
|
if prediction[0] == 1: |
|
st.success('Passenger Survived :thumbsup:') |
|
else: |
|
st.error('Passenger did not Survive :thumbsdown:') |
|
|
|
trigger = st.button('Predict', on_click=predict) |
|
|
|
|