--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - data_registros_layoutv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-registros_100 results: - task: name: Token Classification type: token-classification dataset: name: data_registros_layoutv3 type: data_registros_layoutv3 config: default split: test args: default metrics: - name: Precision type: precision value: 0.9871382636655949 - name: Recall type: recall value: 0.9935275080906149 - name: F1 type: f1 value: 0.9903225806451612 - name: Accuracy type: accuracy value: 0.9992192379762649 --- # layoutlmv3-finetuned-registros_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the data_registros_layoutv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.0110 - Precision: 0.9871 - Recall: 0.9935 - F1: 0.9903 - Accuracy: 0.9992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 10.87 | 250 | 0.4325 | 0.2663 | 0.2638 | 0.2650 | 0.8982 | | 0.6304 | 21.74 | 500 | 0.2065 | 0.7715 | 0.8139 | 0.7921 | 0.9622 | | 0.6304 | 32.61 | 750 | 0.1058 | 0.9048 | 0.9385 | 0.9214 | 0.9866 | | 0.1413 | 43.48 | 1000 | 0.0600 | 0.9314 | 0.9660 | 0.9484 | 0.9944 | | 0.1413 | 54.35 | 1250 | 0.0377 | 0.9451 | 0.9741 | 0.9594 | 0.9969 | | 0.0558 | 65.22 | 1500 | 0.0277 | 0.9697 | 0.9838 | 0.9767 | 0.9981 | | 0.0558 | 76.09 | 1750 | 0.0199 | 0.9792 | 0.9903 | 0.9847 | 0.9988 | | 0.0307 | 86.96 | 2000 | 0.0160 | 0.9824 | 0.9919 | 0.9871 | 0.9989 | | 0.0307 | 97.83 | 2250 | 0.0147 | 0.9823 | 0.9903 | 0.9863 | 0.9988 | | 0.0211 | 108.7 | 2500 | 0.0122 | 0.9871 | 0.9935 | 0.9903 | 0.9992 | | 0.0211 | 119.57 | 2750 | 0.0113 | 0.9871 | 0.9935 | 0.9903 | 0.9992 | | 0.0174 | 130.43 | 3000 | 0.0110 | 0.9871 | 0.9935 | 0.9903 | 0.9992 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3