--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: train args: cord metrics: - name: Precision type: precision value: 0.9304733727810651 - name: Recall type: recall value: 0.9416167664670658 - name: F1 type: f1 value: 0.9360119047619048 - name: Accuracy type: accuracy value: 0.9435483870967742 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2920 - Precision: 0.9305 - Recall: 0.9416 - F1: 0.9360 - Accuracy: 0.9435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 4.17 | 250 | 1.1252 | 0.6774 | 0.7530 | 0.7132 | 0.7721 | | 1.4792 | 8.33 | 500 | 0.5864 | 0.8395 | 0.8653 | 0.8522 | 0.8667 | | 1.4792 | 12.5 | 750 | 0.4279 | 0.8666 | 0.8997 | 0.8828 | 0.9032 | | 0.3807 | 16.67 | 1000 | 0.3512 | 0.9067 | 0.9237 | 0.9151 | 0.9317 | | 0.3807 | 20.83 | 1250 | 0.3030 | 0.9167 | 0.9311 | 0.9239 | 0.9368 | | 0.1615 | 25.0 | 1500 | 0.3022 | 0.9239 | 0.9356 | 0.9297 | 0.9385 | | 0.1615 | 29.17 | 1750 | 0.2931 | 0.9198 | 0.9356 | 0.9276 | 0.9385 | | 0.0879 | 33.33 | 2000 | 0.2968 | 0.9276 | 0.9401 | 0.9338 | 0.9427 | | 0.0879 | 37.5 | 2250 | 0.2853 | 0.9298 | 0.9424 | 0.9361 | 0.9448 | | 0.0641 | 41.67 | 2500 | 0.2920 | 0.9305 | 0.9416 | 0.9360 | 0.9435 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2