--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv type: cord-layoutlmv config: default split: train args: default metrics: - name: Precision type: precision value: 0.9476439790575916 - name: Recall type: recall value: 0.9679144385026738 - name: F1 type: f1 value: 0.9576719576719576 - name: Accuracy type: accuracy value: 0.9905873493975904 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv dataset. It achieves the following results on the evaluation set: - Loss: 0.0693 - Precision: 0.9476 - Recall: 0.9679 - F1: 0.9577 - Accuracy: 0.9906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 27.78 | 250 | 0.0689 | 0.9175 | 0.9519 | 0.9344 | 0.9898 | | 0.0141 | 55.56 | 500 | 0.0693 | 0.9476 | 0.9679 | 0.9577 | 0.9906 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2