jpino commited on
Commit
4623c7b
·
1 Parent(s): f477536

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -26
README.md CHANGED
@@ -3,7 +3,7 @@ license: cc-by-nc-sa-4.0
3
  tags:
4
  - generated_from_trainer
5
  datasets:
6
- - cord-layoutlmv3
7
  metrics:
8
  - precision
9
  - recall
@@ -16,24 +16,24 @@ model-index:
16
  name: Token Classification
17
  type: token-classification
18
  dataset:
19
- name: cord-layoutlmv3
20
- type: cord-layoutlmv3
21
- config: cord
22
  split: train
23
- args: cord
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9304733727810651
28
  - name: Recall
29
  type: recall
30
- value: 0.9416167664670658
31
  - name: F1
32
  type: f1
33
- value: 0.9360119047619048
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9435483870967742
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,13 +41,13 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  # layoutlmv3-finetuned-cord_100
43
 
44
- This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.2920
47
- - Precision: 0.9305
48
- - Recall: 0.9416
49
- - F1: 0.9360
50
- - Accuracy: 0.9435
51
 
52
  ## Model description
53
 
@@ -72,22 +72,14 @@ The following hyperparameters were used during training:
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
- - training_steps: 2500
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 4.17 | 250 | 1.1252 | 0.6774 | 0.7530 | 0.7132 | 0.7721 |
82
- | 1.4792 | 8.33 | 500 | 0.5864 | 0.8395 | 0.8653 | 0.8522 | 0.8667 |
83
- | 1.4792 | 12.5 | 750 | 0.4279 | 0.8666 | 0.8997 | 0.8828 | 0.9032 |
84
- | 0.3807 | 16.67 | 1000 | 0.3512 | 0.9067 | 0.9237 | 0.9151 | 0.9317 |
85
- | 0.3807 | 20.83 | 1250 | 0.3030 | 0.9167 | 0.9311 | 0.9239 | 0.9368 |
86
- | 0.1615 | 25.0 | 1500 | 0.3022 | 0.9239 | 0.9356 | 0.9297 | 0.9385 |
87
- | 0.1615 | 29.17 | 1750 | 0.2931 | 0.9198 | 0.9356 | 0.9276 | 0.9385 |
88
- | 0.0879 | 33.33 | 2000 | 0.2968 | 0.9276 | 0.9401 | 0.9338 | 0.9427 |
89
- | 0.0879 | 37.5 | 2250 | 0.2853 | 0.9298 | 0.9424 | 0.9361 | 0.9448 |
90
- | 0.0641 | 41.67 | 2500 | 0.2920 | 0.9305 | 0.9416 | 0.9360 | 0.9435 |
91
 
92
 
93
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  datasets:
6
+ - cord-layoutlmv
7
  metrics:
8
  - precision
9
  - recall
 
16
  name: Token Classification
17
  type: token-classification
18
  dataset:
19
+ name: cord-layoutlmv
20
+ type: cord-layoutlmv
21
+ config: default
22
  split: train
23
+ args: default
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9476439790575916
28
  - name: Recall
29
  type: recall
30
+ value: 0.9679144385026738
31
  - name: F1
32
  type: f1
33
+ value: 0.9576719576719576
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9905873493975904
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  # layoutlmv3-finetuned-cord_100
43
 
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0693
47
+ - Precision: 0.9476
48
+ - Recall: 0.9679
49
+ - F1: 0.9577
50
+ - Accuracy: 0.9906
51
 
52
  ## Model description
53
 
 
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
+ - training_steps: 500
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 27.78 | 250 | 0.0689 | 0.9175 | 0.9519 | 0.9344 | 0.9898 |
82
+ | 0.0141 | 55.56 | 500 | 0.0693 | 0.9476 | 0.9679 | 0.9577 | 0.9906 |
 
 
 
 
 
 
 
 
83
 
84
 
85
  ### Framework versions