Update README.md
Browse files
README.md
CHANGED
@@ -29,21 +29,53 @@ The recommended usage is by loading the low-rank adapter using unsloth:
|
|
29 |
|
30 |
```python
|
31 |
from unsloth import FastLanguageModel
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
model_name = "jpacifico/Chocolatine-Cook-3B-combined-SFT-DPO-v0.1"
|
34 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
)
|
40 |
|
41 |
FastLanguageModel.for_inference(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
```
|
43 |
|
44 |
### Limitations
|
45 |
|
46 |
-
The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
|
47 |
It does not have any moderation mechanism.
|
48 |
|
49 |
- **Developed by:** Jonathan Pacifico, 2024
|
|
|
29 |
|
30 |
```python
|
31 |
from unsloth import FastLanguageModel
|
32 |
+
from transformers import TextStreamer
|
33 |
+
import torch
|
34 |
+
|
35 |
+
model_name = "jpacifico/final_model_combined_sft_dpo"
|
36 |
|
|
|
37 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
38 |
+
model_name,
|
39 |
+
max_seq_length=2048,
|
40 |
+
dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
41 |
+
load_in_4bit=False
|
42 |
)
|
43 |
|
44 |
FastLanguageModel.for_inference(model)
|
45 |
+
model.eval()
|
46 |
+
|
47 |
+
def generate_response(user_question: str):
|
48 |
+
messages = [
|
49 |
+
{"role": "system", "content": "Tu es un assistant IA spécialisé dans le langage culinaire français. Une question te sera posée. Tu dois générer une réponse précise et concise."},
|
50 |
+
{"role": "user", "content": "En cuisine "+user_question},
|
51 |
+
]
|
52 |
+
|
53 |
+
inputs = tokenizer.apply_chat_template(
|
54 |
+
messages,
|
55 |
+
tokenize=True,
|
56 |
+
add_generation_prompt=True,
|
57 |
+
return_tensors="pt",
|
58 |
+
).to("cuda")
|
59 |
+
|
60 |
+
attention_mask = (inputs != tokenizer.pad_token_id).long()
|
61 |
+
|
62 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
63 |
+
|
64 |
+
with torch.no_grad():
|
65 |
+
_ = model.generate(
|
66 |
+
input_ids=inputs,
|
67 |
+
attention_mask=attention_mask,
|
68 |
+
max_new_tokens=128,
|
69 |
+
use_cache=True,
|
70 |
+
streamer=text_streamer,
|
71 |
+
do_sample=False,
|
72 |
+
temperature=0.7,
|
73 |
+
)
|
74 |
```
|
75 |
|
76 |
### Limitations
|
77 |
|
78 |
+
The Chocolatine model series is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
|
79 |
It does not have any moderation mechanism.
|
80 |
|
81 |
- **Developed by:** Jonathan Pacifico, 2024
|