File size: 2,877 Bytes
3261e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gymnasium as gym
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.env_util import make_vec_env
import random


def eval_model_with_seed(model_fp, env_id, seed, n_eval_episodes=10, n_envs=1):
    eval_env = make_vec_env(env_id, seed=seed, n_envs=n_envs)
    return eval_model(model_fp, eval_env, n_eval_episodes)


def eval_model_random(model_fp, env_id, n_eval_episodes=10):
    eval_env = Monitor(gym.make(env_id))
    return eval_model(model_fp, eval_env, n_eval_episodes)


def eval_model_random_with_average(
    model_fp, env_id, n_eval_episodes=10, n_average=10, verbose=False
):
    result_sum = 0
    mean_reward_sum = 0
    std_reward_sum = 0
    for i in range(n_average):
        if verbose and i % 100 == 0:
            print(f"Progress: {i}/{n_average}")
        result, mean_reward, std_reward = eval_model_random(
            model_fp, env_id, n_eval_episodes
        )
        result_sum += result
        mean_reward_sum += mean_reward
        std_reward_sum += std_reward
    return (
        result_sum / n_average,
        mean_reward_sum / n_average,
        std_reward_sum / n_average,
    )


def eval_model(model_fp, eval_env, n_eval_episodes=10):
    model = PPO.load(model_fp, env=eval_env)
    mean_reward, std_reward = evaluate_policy(
        model, eval_env, n_eval_episodes=n_eval_episodes, deterministic=True
    )
    result = mean_reward - std_reward
    return result, mean_reward, std_reward


def search_for_best_seed(
    model_fp,
    env_id,
    n_eval_episodes=10,
    n_total_envs_to_search=1000,
    max_n_envs=16,
    verbose=False,
):
    best_result = 0
    best_seed = 0
    best_n_envs = 0
    for i in range(n_total_envs_to_search):
        if verbose and i % 100 == 0:
            print(f"Progress: {i}/{n_total_envs_to_search}")
        seed = random.randint(0, 1000000000000)
        n_envs = random.randint(1, max_n_envs)
        result, _, _ = eval_model_with_seed(
            model_fp, env_id, seed, n_eval_episodes, n_envs
        )
        if result > best_result:
            best_result = result
            best_seed = seed
            best_n_envs = n_envs
    return best_result, best_seed, best_n_envs


def search_for_best_seed_in_range(model_fp, env_id, range=range(0, 1000)):
    best_result = 0
    best_seed = 0
    best_n_envs = 0
    for seed in range:
        for n_envs in [1, 2, 4, 8, 16, 32]:
            result, _, _ = eval_model_with_seed(model_fp, env_id, seed, 10, n_envs)
            if result > best_result:
                best_result = result
                best_seed = seed
                best_n_envs = n_envs
                print(best_result, seed, n_envs)
    print(best_result, best_seed, best_n_envs)
    return best_result, best_seed, best_n_envs