--- license: cc-by-nc-4.0 base_model: Johnsnowlabs/PhiMerge-2.7B-Dare tags: - generated_from_trainer - Phi - axolotl - instruct - finetune - chatml - gpt4 - synthetic data - distillation model-index: - name: PhiMerge-2.7B-Dare-daser results: [] datasets: - argilla/distilabel-capybara-dpo-7k-binarized language: - en library_name: transformers pipeline_tag: text-generation --- # PhiMerge-2.7B-Dare-daser ![image/png](https://cdn-uploads.huggingface.co/production/uploads/660cfe98280a82e38fe4ef49/yToMeQHvr5CJPYxA5sdQc.png) PhiMerge-2.7B-Dare-daser is a mixture of two techniques that are LaserQlora and Dora. This model is a DPO fine-tuned of [johnsnowlabs/PhiMerge-2.7B-Dare](https://huggingface.co/johnsnowlabs/PhiMerge-2.7B-Dare) using the [argilla/distilabel-capybara-dpo-7k-binarized](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized) preference dataset. The model has been trained on top 16 projections (q_proj, k_proj, v_proj) based on snr values. This model has been trained for 1080 steps. ## 🏆 Evaluation results #### Coming Soon ## Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "johnsnowlabs/PhiMerge-2.7B-Dare-daser" messages = [{"role": "user", "content": "Explain what is Machine learning."}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-04 - train_batch_size: 1 - eval_batch_size: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: paged_adamw_32bit - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1080 ### LoRA Config - lora_r: 16 - lora_alpha: 32 - lora_dropout: 0.05 - peft_use_dora: true ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0