File size: 2,477 Bytes
80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf 80913ed fbe62cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: cc-by-nc-4.0
base_model: Johnsnowlabs/PhiMerge-2.7B-Dare
tags:
- generated_from_trainer
- Phi
- axolotl
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
model-index:
- name: PhiMerge-2.7B-Dare-daser
results: []
datasets:
- argilla/distilabel-capybara-dpo-7k-binarized
language:
- en
library_name: transformers
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PhiMerge-2.7B-Dare-daser
![image/png](https://cdn-uploads.huggingface.co/production/uploads/660cfe98280a82e38fe4ef49/yToMeQHvr5CJPYxA5sdQc.png)
PhiMerge-2.7B-Dare-daser is a mixture of two techniques that are LaserQlora and Dora. This model is a DPO fine-tuned of [johnsnowlabs/PhiMerge-2.7B-Dare](https://huggingface.co/johnsnowlabs/PhiMerge-2.7B-Dare) using the [argilla/distilabel-capybara-dpo-7k-binarized](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized) preference dataset. The model has been trained on top 16 projections (q_proj, k_proj, v_proj) based on snr values. This model has been trained for 1080 steps.
## 🏆 Evaluation results
#### Coming Soon
## Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "johnsnowlabs/PhiMerge-2.7B-Dare-daser"
messages = [{"role": "user", "content": "Explain what is Machine learning."}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-04
- train_batch_size: 1
- eval_batch_size: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: paged_adamw_32bit
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1080
### LoRA Config
- lora_r: 16
- lora_alpha: 32
- lora_dropout: 0.05
- peft_use_dora: true
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0 |