Update README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
---
|
2 |
-
base_model:
|
|
|
3 |
tags:
|
4 |
- text-generation-inference
|
5 |
- transformers
|
6 |
-
-
|
7 |
- llama
|
8 |
- gguf
|
9 |
license: apache-2.0
|
@@ -15,8 +16,6 @@ language:
|
|
15 |
|
16 |
- **Developed by:** johnnietien
|
17 |
- **License:** apache-2.0
|
18 |
-
- **Finetuned from model :**
|
19 |
|
20 |
-
This
|
21 |
-
|
22 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- meta-llama/Llama-3.2-3B-Instruct
|
4 |
tags:
|
5 |
- text-generation-inference
|
6 |
- transformers
|
7 |
+
- Reasoning
|
8 |
- llama
|
9 |
- gguf
|
10 |
license: apache-2.0
|
|
|
16 |
|
17 |
- **Developed by:** johnnietien
|
18 |
- **License:** apache-2.0
|
19 |
+
- **Finetuned from model :** meta-llama/Llama-3.2-3B-Instruct
|
20 |
|
21 |
+
This is one of my first Reasoning model can have an “aha moment” same as DeepSeek’s R1. We've enhanced the entire GRPO process, making it use 80% less VRAM than Hugging Face + FA2. This allows you to reproduce R1-Zero's "aha moment" on just 7GB of VRAM using llama-3.2-3b. Please note, this isn’t fine-tuning DeepSeek’s R1 distilled models or using distilled data from R1 for tuning. This is converting a standard model into a full-fledged reasoning model using GRPO.
|
|
|
|