File size: 4,608 Bytes
ac1387e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60d5b23
ac1387e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8326ac
ac1387e
 
 
 
 
60d5b23
ac1387e
 
 
60d5b23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac1387e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
library_name: transformers
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: chickens
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# chickens

This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1692

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1440

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| No log        | 1.0     | 23   | 0.9258          |
| 1.1129        | 2.0     | 46   | 0.8241          |
| 0.8989        | 3.0     | 69   | 0.8080          |
| 0.8799        | 4.0     | 92   | 0.9306          |
| 0.8799        | 5.0     | 115  | 0.5536          |
| 0.6986        | 6.0     | 138  | 0.5199          |
| 0.6088        | 7.0     | 161  | 0.4739          |
| 0.631         | 8.0     | 184  | 0.5007          |
| 0.631         | 9.0     | 207  | 0.6598          |
| 0.5804        | 10.0    | 230  | 0.4345          |
| 0.5656        | 11.0    | 253  | 0.4864          |
| 0.5725        | 12.0    | 276  | 0.3707          |
| 0.5725        | 13.0    | 299  | 0.3357          |
| 0.4953        | 14.0    | 322  | 0.4104          |
| 0.4619        | 15.0    | 345  | 0.3681          |
| 0.4463        | 16.0    | 368  | 0.3045          |
| 0.433         | 17.0    | 391  | 0.3330          |
| 0.433         | 18.0    | 414  | 0.3561          |
| 0.396         | 19.0    | 437  | 0.2583          |
| 0.3845        | 20.0    | 460  | 0.2699          |
| 0.3569        | 21.0    | 483  | 0.2714          |
| 0.3569        | 22.0    | 506  | 0.2978          |
| 0.3574        | 23.0    | 529  | 0.2844          |
| 0.3424        | 24.0    | 552  | 0.2650          |
| 0.35          | 25.0    | 575  | 0.2829          |
| 0.35          | 26.0    | 598  | 0.2533          |
| 0.34          | 27.0    | 621  | 0.2306          |
| 0.3309        | 28.0    | 644  | 0.2348          |
| 0.3297        | 29.0    | 667  | 0.2912          |
| 0.3357        | 30.0    | 690  | 0.2679          |
| 0.3357        | 31.0    | 713  | 0.2685          |
| 0.3267        | 32.0    | 736  | 0.2384          |
| 0.3102        | 33.0    | 759  | 0.2346          |
| 0.3204        | 34.0    | 782  | 0.2850          |
| 0.3204        | 35.0    | 805  | 0.2969          |
| 0.3191        | 36.0    | 828  | 0.2315          |
| 0.3051        | 37.0    | 851  | 0.1958          |
| 0.2825        | 38.0    | 874  | 0.2211          |
| 0.2825        | 39.0    | 897  | 0.2309          |
| 0.2895        | 40.0    | 920  | 0.2610          |
| 0.2891        | 41.0    | 943  | 0.2334          |
| 0.279         | 42.0    | 966  | 0.2149          |
| 0.279         | 43.0    | 989  | 0.2017          |
| 0.2735        | 44.0    | 1012 | 0.2445          |
| 0.2688        | 45.0    | 1035 | 0.2164          |
| 0.2602        | 46.0    | 1058 | 0.1995          |
| 0.2644        | 47.0    | 1081 | 0.1936          |
| 0.2644        | 48.0    | 1104 | 0.1884          |
| 0.2634        | 49.0    | 1127 | 0.1974          |
| 0.2568        | 50.0    | 1150 | 0.1981          |
| 0.2456        | 51.0    | 1173 | 0.1799          |
| 0.2456        | 52.0    | 1196 | 0.1777          |
| 0.2479        | 53.0    | 1219 | 0.1915          |
| 0.2529        | 54.0    | 1242 | 0.1928          |
| 0.2533        | 55.0    | 1265 | 0.1772          |
| 0.2533        | 56.0    | 1288 | 0.1863          |
| 0.2516        | 57.0    | 1311 | 0.1775          |
| 0.2495        | 58.0    | 1334 | 0.1808          |
| 0.2428        | 59.0    | 1357 | 0.1734          |
| 0.2454        | 60.0    | 1380 | 0.1696          |
| 0.2454        | 61.0    | 1403 | 0.1766          |
| 0.2452        | 62.0    | 1426 | 0.1718          |
| 0.2367        | 62.6087 | 1440 | 0.1692          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.14.4
- Tokenizers 0.19.1