Upload 3 files
Browse files- LMConfig.py +10 -7
- config.json +32 -31
- model.py +146 -195
LMConfig.py
CHANGED
@@ -15,7 +15,8 @@ class LMConfig(PretrainedConfig):
|
|
15 |
hidden_dim: int = None,
|
16 |
multiple_of: int = 64,
|
17 |
norm_eps: float = 1e-5,
|
18 |
-
max_seq_len: int =
|
|
|
19 |
dropout: float = 0.0,
|
20 |
flash_attn: bool = True,
|
21 |
####################################################
|
@@ -23,13 +24,14 @@ class LMConfig(PretrainedConfig):
|
|
23 |
# When use_moe is false, the following is invalid
|
24 |
####################################################
|
25 |
use_moe: bool = False,
|
26 |
-
|
27 |
-
|
|
|
28 |
n_shared_experts: bool = True,
|
29 |
-
scoring_func='softmax',
|
30 |
-
aux_loss_alpha=0.
|
31 |
-
seq_aux=True,
|
32 |
-
norm_topk_prob=True,
|
33 |
**kwargs,
|
34 |
):
|
35 |
self.dim = dim
|
@@ -41,6 +43,7 @@ class LMConfig(PretrainedConfig):
|
|
41 |
self.multiple_of = multiple_of
|
42 |
self.norm_eps = norm_eps
|
43 |
self.max_seq_len = max_seq_len
|
|
|
44 |
self.dropout = dropout
|
45 |
self.flash_attn = flash_attn
|
46 |
####################################################
|
|
|
15 |
hidden_dim: int = None,
|
16 |
multiple_of: int = 64,
|
17 |
norm_eps: float = 1e-5,
|
18 |
+
max_seq_len: int = 8192,
|
19 |
+
rope_theta: int = 1e4,
|
20 |
dropout: float = 0.0,
|
21 |
flash_attn: bool = True,
|
22 |
####################################################
|
|
|
24 |
# When use_moe is false, the following is invalid
|
25 |
####################################################
|
26 |
use_moe: bool = False,
|
27 |
+
####################################################
|
28 |
+
num_experts_per_tok: int = 2,
|
29 |
+
n_routed_experts: int = 4,
|
30 |
n_shared_experts: bool = True,
|
31 |
+
scoring_func: str = 'softmax',
|
32 |
+
aux_loss_alpha: float = 0.1,
|
33 |
+
seq_aux: bool = True,
|
34 |
+
norm_topk_prob: bool = True,
|
35 |
**kwargs,
|
36 |
):
|
37 |
self.dim = dim
|
|
|
43 |
self.multiple_of = multiple_of
|
44 |
self.norm_eps = norm_eps
|
45 |
self.max_seq_len = max_seq_len
|
46 |
+
self.rope_theta = rope_theta
|
47 |
self.dropout = dropout
|
48 |
self.flash_attn = flash_attn
|
49 |
####################################################
|
config.json
CHANGED
@@ -1,31 +1,32 @@
|
|
1 |
-
{
|
2 |
-
"architectures": [
|
3 |
-
"
|
4 |
-
],
|
5 |
-
"auto_map": {
|
6 |
-
"AutoConfig": "LMConfig.LMConfig",
|
7 |
-
"AutoModelForCausalLM": "model.
|
8 |
-
},
|
9 |
-
"aux_loss_alpha": 0.01,
|
10 |
-
"dim": 768,
|
11 |
-
"dropout": 0.0,
|
12 |
-
"flash_attn": true,
|
13 |
-
"hidden_dim": null,
|
14 |
-
"max_seq_len": 512,
|
15 |
-
"model_type": "minimind",
|
16 |
-
"multiple_of": 64,
|
17 |
-
"n_heads": 16,
|
18 |
-
"n_kv_heads": 8,
|
19 |
-
"n_layers": 16,
|
20 |
-
"n_routed_experts": 4,
|
21 |
-
"n_shared_experts": true,
|
22 |
-
"norm_eps": 1e-05,
|
23 |
-
"norm_topk_prob": true,
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"
|
29 |
-
"
|
30 |
-
"
|
31 |
-
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MiniMindLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "LMConfig.LMConfig",
|
7 |
+
"AutoModelForCausalLM": "model.MiniMindLM"
|
8 |
+
},
|
9 |
+
"aux_loss_alpha": 0.01,
|
10 |
+
"dim": 768,
|
11 |
+
"dropout": 0.0,
|
12 |
+
"flash_attn": true,
|
13 |
+
"hidden_dim": null,
|
14 |
+
"max_seq_len": 512,
|
15 |
+
"model_type": "minimind",
|
16 |
+
"multiple_of": 64,
|
17 |
+
"n_heads": 16,
|
18 |
+
"n_kv_heads": 8,
|
19 |
+
"n_layers": 16,
|
20 |
+
"n_routed_experts": 4,
|
21 |
+
"n_shared_experts": true,
|
22 |
+
"norm_eps": 1e-05,
|
23 |
+
"norm_topk_prob": true,
|
24 |
+
"rope_theta": 10000.0,
|
25 |
+
"num_experts_per_tok": 2,
|
26 |
+
"scoring_func": "softmax",
|
27 |
+
"seq_aux": true,
|
28 |
+
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.37.2",
|
30 |
+
"use_moe": false,
|
31 |
+
"vocab_size": 6400
|
32 |
+
}
|
model.py
CHANGED
@@ -4,7 +4,7 @@ import inspect
|
|
4 |
import time
|
5 |
|
6 |
from .LMConfig import LMConfig
|
7 |
-
from typing import Any, Optional, Tuple
|
8 |
import numpy as np
|
9 |
import torch
|
10 |
import torch.nn.functional as F
|
@@ -19,15 +19,11 @@ class RMSNorm(torch.nn.Module):
|
|
19 |
self.eps = eps
|
20 |
self.weight = nn.Parameter(torch.ones(dim))
|
21 |
|
22 |
-
def _norm(self, x):
|
23 |
-
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
24 |
-
|
25 |
def forward(self, x):
|
26 |
-
|
27 |
-
return output * self.weight
|
28 |
|
29 |
|
30 |
-
def precompute_pos_cis(dim: int, end: int, theta: float =
|
31 |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
32 |
t = torch.arange(end, device=freqs.device) # type: ignore
|
33 |
freqs = torch.outer(t, freqs).float() # type: ignore
|
@@ -76,71 +72,69 @@ class Attention(nn.Module):
|
|
76 |
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
77 |
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
78 |
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
79 |
-
self.k_cache, self.v_cache = None, None
|
80 |
self.attn_dropout = nn.Dropout(args.dropout)
|
81 |
self.resid_dropout = nn.Dropout(args.dropout)
|
82 |
self.dropout = args.dropout
|
83 |
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
|
84 |
-
|
85 |
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
86 |
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
87 |
mask = torch.triu(mask, diagonal=1)
|
88 |
-
self.register_buffer("mask", mask)
|
89 |
-
|
90 |
-
def forward(self, x: torch.Tensor, pos_cis: torch.Tensor, kv_cache=False):
|
91 |
-
bsz, seqlen, _ = x.shape
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
98 |
|
99 |
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
else:
|
120 |
-
scores =
|
121 |
-
scores
|
122 |
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
123 |
scores = self.attn_dropout(scores)
|
124 |
-
output =
|
125 |
-
|
126 |
-
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
|
127 |
|
128 |
-
output =
|
129 |
-
output = self.resid_dropout(output)
|
130 |
-
return output
|
131 |
|
132 |
|
133 |
class FeedForward(nn.Module):
|
134 |
-
def __init__(self,
|
135 |
super().__init__()
|
136 |
-
if hidden_dim is None:
|
137 |
-
hidden_dim = 4 * dim
|
138 |
hidden_dim = int(2 * hidden_dim / 3)
|
139 |
-
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
140 |
-
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
141 |
-
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
142 |
-
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
143 |
-
self.dropout = nn.Dropout(dropout)
|
144 |
|
145 |
def forward(self, x):
|
146 |
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
@@ -168,7 +162,6 @@ class MoEGate(nn.Module):
|
|
168 |
|
169 |
def forward(self, hidden_states):
|
170 |
bsz, seq_len, h = hidden_states.shape
|
171 |
-
|
172 |
hidden_states = hidden_states.view(-1, h)
|
173 |
logits = F.linear(hidden_states, self.weight, None)
|
174 |
if self.scoring_func == 'softmax':
|
@@ -200,7 +193,7 @@ class MoEGate(nn.Module):
|
|
200 |
fi = ce * self.n_routed_experts
|
201 |
aux_loss = (Pi * fi).sum() * self.alpha
|
202 |
else:
|
203 |
-
aux_loss =
|
204 |
return topk_idx, topk_weight, aux_loss
|
205 |
|
206 |
|
@@ -209,50 +202,35 @@ class MOEFeedForward(nn.Module):
|
|
209 |
super().__init__()
|
210 |
self.config = config
|
211 |
self.experts = nn.ModuleList([
|
212 |
-
FeedForward(
|
213 |
-
dim=config.dim,
|
214 |
-
hidden_dim=config.hidden_dim,
|
215 |
-
multiple_of=config.multiple_of,
|
216 |
-
dropout=config.dropout,
|
217 |
-
)
|
218 |
for _ in range(config.n_routed_experts)
|
219 |
])
|
220 |
-
|
221 |
self.gate = MoEGate(config)
|
222 |
if config.n_shared_experts is not None:
|
223 |
-
self.shared_experts = FeedForward(
|
224 |
-
dim=config.dim,
|
225 |
-
hidden_dim=config.hidden_dim,
|
226 |
-
multiple_of=config.multiple_of,
|
227 |
-
dropout=config.dropout,
|
228 |
-
)
|
229 |
|
230 |
def forward(self, x):
|
231 |
identity = x
|
232 |
orig_shape = x.shape
|
233 |
bsz, seq_len, _ = x.shape
|
234 |
-
|
235 |
# 使用门控机制选择专家
|
236 |
topk_idx, topk_weight, aux_loss = self.gate(x)
|
237 |
-
|
238 |
x = x.view(-1, x.shape[-1])
|
239 |
flat_topk_idx = topk_idx.view(-1)
|
240 |
-
|
241 |
if self.training:
|
242 |
# 训练模式下,重复输入数据
|
243 |
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
|
244 |
y = torch.empty_like(x, dtype=torch.float16)
|
245 |
for i, expert in enumerate(self.experts):
|
246 |
-
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i])
|
247 |
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
248 |
y = y.view(*orig_shape)
|
249 |
else:
|
250 |
# 推理模式下,只选择最优专家
|
251 |
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
252 |
-
|
253 |
if self.config.n_shared_experts is not None:
|
254 |
y = y + self.shared_experts(identity)
|
255 |
-
|
256 |
return y
|
257 |
|
258 |
@torch.no_grad()
|
@@ -271,7 +249,7 @@ class MOEFeedForward(nn.Module):
|
|
271 |
expert = self.experts[i]
|
272 |
exp_token_idx = token_idxs[start_idx:end_idx]
|
273 |
expert_tokens = x[exp_token_idx]
|
274 |
-
expert_out = expert(expert_tokens)
|
275 |
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
276 |
# 使用 scatter_add_ 进行 sum 操作
|
277 |
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
|
@@ -279,146 +257,119 @@ class MOEFeedForward(nn.Module):
|
|
279 |
return expert_cache
|
280 |
|
281 |
|
282 |
-
class
|
283 |
-
def __init__(self, layer_id: int,
|
284 |
super().__init__()
|
285 |
-
self.n_heads =
|
286 |
-
self.dim =
|
287 |
-
self.head_dim =
|
288 |
-
self.attention = Attention(
|
289 |
|
290 |
self.layer_id = layer_id
|
291 |
-
self.attention_norm = RMSNorm(
|
292 |
-
self.ffn_norm = RMSNorm(
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
self.
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
def forward(self, x, pos_cis, kv_cache=False):
|
305 |
-
h = x + self.attention(self.attention_norm(x), pos_cis, kv_cache)
|
306 |
out = h + self.feed_forward(self.ffn_norm(h))
|
307 |
-
return out
|
308 |
|
309 |
|
310 |
-
class
|
311 |
config_class = LMConfig
|
312 |
-
last_loss: Optional[torch.Tensor]
|
313 |
|
314 |
def __init__(self, params: LMConfig = None):
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
self.params = params
|
319 |
-
self.vocab_size = params.vocab_size
|
320 |
-
self.n_layers = params.n_layers
|
321 |
-
|
322 |
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
323 |
self.dropout = nn.Dropout(params.dropout)
|
324 |
-
self.layers =
|
325 |
-
for layer_id in range(self.n_layers):
|
326 |
-
self.layers.append(TransformerBlock(layer_id, params))
|
327 |
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
328 |
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
329 |
self.tok_embeddings.weight = self.output.weight
|
330 |
-
pos_cis
|
331 |
-
|
332 |
-
|
333 |
-
self.apply(self._init_weights)
|
334 |
-
|
335 |
-
for pn, p in self.named_parameters():
|
336 |
-
if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
|
337 |
-
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * params.n_layers))
|
338 |
-
|
339 |
-
self.last_loss = None
|
340 |
self.OUT = CausalLMOutputWithPast()
|
341 |
|
342 |
-
def
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
h = self.tok_embeddings(tokens)
|
362 |
-
h = self.dropout(h)
|
363 |
-
pos_cis = self.pos_cis[current_idx:current_idx + seqlen]
|
364 |
-
for idx, layer in enumerate(self.layers):
|
365 |
-
h = layer(h, pos_cis, kv_cache)
|
366 |
-
|
367 |
-
h = self.norm(h)
|
368 |
-
|
369 |
-
if targets is not None:
|
370 |
-
logits = self.output(h)
|
371 |
-
self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
372 |
-
else:
|
373 |
-
logits = self.output(h[:, [-1], :])
|
374 |
-
self.last_loss = None
|
375 |
-
|
376 |
self.OUT.__setitem__('logits', logits)
|
377 |
-
self.OUT.__setitem__('
|
|
|
378 |
return self.OUT
|
379 |
|
380 |
@torch.inference_mode()
|
381 |
-
def generate(self,
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
else:
|
389 |
-
|
390 |
-
|
391 |
-
logits =
|
392 |
-
logits
|
393 |
-
|
394 |
-
|
395 |
-
logits
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
if idx_next == eos:
|
409 |
break
|
410 |
-
|
411 |
-
idx = torch.cat((idx, idx_next), dim=1)
|
412 |
-
if stream:
|
413 |
-
yield idx[:, index:]
|
414 |
-
|
415 |
-
if not stream:
|
416 |
-
yield idx[:, index:]
|
417 |
-
|
418 |
-
@torch.inference_mode()
|
419 |
-
def eval_answer(self, idx):
|
420 |
-
idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
|
421 |
-
inference_res = self(idx_cond)
|
422 |
-
logits = inference_res.logits
|
423 |
-
logits = logits[:, -1, :]
|
424 |
-
return logits
|
|
|
4 |
import time
|
5 |
|
6 |
from .LMConfig import LMConfig
|
7 |
+
from typing import Any, Optional, Tuple, List
|
8 |
import numpy as np
|
9 |
import torch
|
10 |
import torch.nn.functional as F
|
|
|
19 |
self.eps = eps
|
20 |
self.weight = nn.Parameter(torch.ones(dim))
|
21 |
|
|
|
|
|
|
|
22 |
def forward(self, x):
|
23 |
+
return self.weight * (x.float() * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)).type_as(x)
|
|
|
24 |
|
25 |
|
26 |
+
def precompute_pos_cis(dim: int, end: int, theta: float = 1e4):
|
27 |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
28 |
t = torch.arange(end, device=freqs.device) # type: ignore
|
29 |
freqs = torch.outer(t, freqs).float() # type: ignore
|
|
|
72 |
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
73 |
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
74 |
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
|
|
75 |
self.attn_dropout = nn.Dropout(args.dropout)
|
76 |
self.resid_dropout = nn.Dropout(args.dropout)
|
77 |
self.dropout = args.dropout
|
78 |
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
|
|
|
79 |
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
80 |
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
81 |
mask = torch.triu(mask, diagonal=1)
|
82 |
+
self.register_buffer("mask", mask, persistent=False)
|
|
|
|
|
|
|
83 |
|
84 |
+
def forward(self,
|
85 |
+
x: torch.Tensor,
|
86 |
+
pos_cis: torch.Tensor,
|
87 |
+
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
88 |
+
use_cache=False):
|
89 |
+
bsz, seq_len, _ = x.shape
|
90 |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
91 |
+
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
|
92 |
+
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
93 |
+
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
|
|
94 |
|
95 |
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
96 |
+
# kv_cache实现
|
97 |
+
if past_key_value is not None:
|
98 |
+
xk = torch.cat([past_key_value[0], xk], dim=1)
|
99 |
+
xv = torch.cat([past_key_value[1], xv], dim=1)
|
100 |
+
past_kv = (xk, xv) if use_cache else None
|
101 |
+
|
102 |
+
xq, xk, xv = (
|
103 |
+
xq.transpose(1, 2),
|
104 |
+
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
105 |
+
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
106 |
+
)
|
107 |
+
if self.flash and seq_len != 1:
|
108 |
+
dropout_p = self.dropout if self.training else 0.0
|
109 |
+
output = F.scaled_dot_product_attention(
|
110 |
+
xq, xk, xv,
|
111 |
+
attn_mask=None,
|
112 |
+
dropout_p=dropout_p,
|
113 |
+
is_causal=True
|
114 |
+
)
|
115 |
else:
|
116 |
+
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
117 |
+
scores += self.mask[:, :, :seq_len, :seq_len]
|
118 |
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
119 |
scores = self.attn_dropout(scores)
|
120 |
+
output = scores @ xv
|
|
|
|
|
121 |
|
122 |
+
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
|
123 |
+
output = self.resid_dropout(self.wo(output))
|
124 |
+
return output, past_kv
|
125 |
|
126 |
|
127 |
class FeedForward(nn.Module):
|
128 |
+
def __init__(self, config: LMConfig):
|
129 |
super().__init__()
|
130 |
+
if config.hidden_dim is None:
|
131 |
+
hidden_dim = 4 * config.dim
|
132 |
hidden_dim = int(2 * hidden_dim / 3)
|
133 |
+
config.hidden_dim = config.multiple_of * ((hidden_dim + config.multiple_of - 1) // config.multiple_of)
|
134 |
+
self.w1 = nn.Linear(config.dim, config.hidden_dim, bias=False)
|
135 |
+
self.w2 = nn.Linear(config.hidden_dim, config.dim, bias=False)
|
136 |
+
self.w3 = nn.Linear(config.dim, config.hidden_dim, bias=False)
|
137 |
+
self.dropout = nn.Dropout(config.dropout)
|
138 |
|
139 |
def forward(self, x):
|
140 |
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
|
|
162 |
|
163 |
def forward(self, hidden_states):
|
164 |
bsz, seq_len, h = hidden_states.shape
|
|
|
165 |
hidden_states = hidden_states.view(-1, h)
|
166 |
logits = F.linear(hidden_states, self.weight, None)
|
167 |
if self.scoring_func == 'softmax':
|
|
|
193 |
fi = ce * self.n_routed_experts
|
194 |
aux_loss = (Pi * fi).sum() * self.alpha
|
195 |
else:
|
196 |
+
aux_loss = 0
|
197 |
return topk_idx, topk_weight, aux_loss
|
198 |
|
199 |
|
|
|
202 |
super().__init__()
|
203 |
self.config = config
|
204 |
self.experts = nn.ModuleList([
|
205 |
+
FeedForward(config)
|
|
|
|
|
|
|
|
|
|
|
206 |
for _ in range(config.n_routed_experts)
|
207 |
])
|
|
|
208 |
self.gate = MoEGate(config)
|
209 |
if config.n_shared_experts is not None:
|
210 |
+
self.shared_experts = FeedForward(config)
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
def forward(self, x):
|
213 |
identity = x
|
214 |
orig_shape = x.shape
|
215 |
bsz, seq_len, _ = x.shape
|
|
|
216 |
# 使用门控机制选择专家
|
217 |
topk_idx, topk_weight, aux_loss = self.gate(x)
|
|
|
218 |
x = x.view(-1, x.shape[-1])
|
219 |
flat_topk_idx = topk_idx.view(-1)
|
|
|
220 |
if self.training:
|
221 |
# 训练模式下,重复输入数据
|
222 |
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
|
223 |
y = torch.empty_like(x, dtype=torch.float16)
|
224 |
for i, expert in enumerate(self.experts):
|
225 |
+
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) # 确保类型一致
|
226 |
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
227 |
y = y.view(*orig_shape)
|
228 |
else:
|
229 |
# 推理模式下,只选择最优专家
|
230 |
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
|
|
231 |
if self.config.n_shared_experts is not None:
|
232 |
y = y + self.shared_experts(identity)
|
233 |
+
self.aux_loss = aux_loss
|
234 |
return y
|
235 |
|
236 |
@torch.no_grad()
|
|
|
249 |
expert = self.experts[i]
|
250 |
exp_token_idx = token_idxs[start_idx:end_idx]
|
251 |
expert_tokens = x[exp_token_idx]
|
252 |
+
expert_out = expert(expert_tokens).to(expert_cache.dtype)
|
253 |
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
254 |
# 使用 scatter_add_ 进行 sum 操作
|
255 |
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
|
|
|
257 |
return expert_cache
|
258 |
|
259 |
|
260 |
+
class MiniMindBlock(nn.Module):
|
261 |
+
def __init__(self, layer_id: int, config: LMConfig):
|
262 |
super().__init__()
|
263 |
+
self.n_heads = config.n_heads
|
264 |
+
self.dim = config.dim
|
265 |
+
self.head_dim = config.dim // config.n_heads
|
266 |
+
self.attention = Attention(config)
|
267 |
|
268 |
self.layer_id = layer_id
|
269 |
+
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
270 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
271 |
+
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
|
272 |
+
|
273 |
+
def forward(self, x, pos_cis, past_key_value=None, use_cache=False):
|
274 |
+
h_attn, past_kv = self.attention(
|
275 |
+
self.attention_norm(x),
|
276 |
+
pos_cis,
|
277 |
+
past_key_value=past_key_value,
|
278 |
+
use_cache=use_cache
|
279 |
+
)
|
280 |
+
h = x + h_attn
|
|
|
|
|
|
|
281 |
out = h + self.feed_forward(self.ffn_norm(h))
|
282 |
+
return out, past_kv
|
283 |
|
284 |
|
285 |
+
class MiniMindLM(PreTrainedModel):
|
286 |
config_class = LMConfig
|
|
|
287 |
|
288 |
def __init__(self, params: LMConfig = None):
|
289 |
+
self.params = params or LMConfig()
|
290 |
+
super().__init__(self.params)
|
291 |
+
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
|
|
|
|
|
|
|
|
|
292 |
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
293 |
self.dropout = nn.Dropout(params.dropout)
|
294 |
+
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
|
|
|
|
|
295 |
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
296 |
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
297 |
self.tok_embeddings.weight = self.output.weight
|
298 |
+
self.register_buffer("pos_cis", precompute_pos_cis(params.dim // params.n_heads, params.max_seq_len,
|
299 |
+
theta=params.rope_theta), persistent=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
self.OUT = CausalLMOutputWithPast()
|
301 |
|
302 |
+
def forward(self,
|
303 |
+
input_ids: Optional[torch.Tensor] = None,
|
304 |
+
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
305 |
+
use_cache: bool = False,
|
306 |
+
**args):
|
307 |
+
past_key_values = past_key_values or [None] * len(self.layers)
|
308 |
+
start_pos = args.get('start_pos', 0)
|
309 |
+
h = self.dropout(self.tok_embeddings(input_ids))
|
310 |
+
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
|
311 |
+
past_kvs = []
|
312 |
+
for l, layer in enumerate(self.layers):
|
313 |
+
h, past_kv = layer(
|
314 |
+
h, pos_cis,
|
315 |
+
past_key_value=past_key_values[l],
|
316 |
+
use_cache=use_cache
|
317 |
+
)
|
318 |
+
past_kvs.append(past_kv)
|
319 |
+
logits = self.output(self.norm(h))
|
320 |
+
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
self.OUT.__setitem__('logits', logits)
|
322 |
+
self.OUT.__setitem__('aux_loss', aux_loss)
|
323 |
+
self.OUT.__setitem__('past_key_values', past_kvs)
|
324 |
return self.OUT
|
325 |
|
326 |
@torch.inference_mode()
|
327 |
+
def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90,
|
328 |
+
stream=False, rp=1., use_cache=True, pad_token_id=0, **args):
|
329 |
+
# 流式生成
|
330 |
+
if stream:
|
331 |
+
return self._generate_stream(input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache)
|
332 |
+
|
333 |
+
# 直接生成
|
334 |
+
generated = []
|
335 |
+
for i in range(input_ids.size(0)):
|
336 |
+
non_pad = input_ids[i][input_ids[i] != pad_token_id].unsqueeze(0)
|
337 |
+
out = self._generate_stream(non_pad, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache)
|
338 |
+
tokens_list = [tokens[:, -1:] for tokens in out]
|
339 |
+
gen = torch.cat(tokens_list, dim=-1) if tokens_list else non_pad
|
340 |
+
full_sequence = torch.cat([non_pad, gen], dim=-1)
|
341 |
+
generated.append(full_sequence)
|
342 |
+
max_length = max(seq.size(1) for seq in generated)
|
343 |
+
generated = [
|
344 |
+
torch.cat(
|
345 |
+
[seq, torch.full((1, max_length - seq.size(1)), pad_token_id, dtype=seq.dtype, device=seq.device)],
|
346 |
+
dim=-1)
|
347 |
+
for seq in generated
|
348 |
+
]
|
349 |
+
return torch.cat(generated, dim=0)
|
350 |
+
|
351 |
+
def _generate_stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args):
|
352 |
+
start, first_seq, past_kvs = input_ids.shape[1], True, None
|
353 |
+
while input_ids.shape[1] < max_new_tokens - 1:
|
354 |
+
if first_seq or not use_cache:
|
355 |
+
out, first_seq = self(input_ids, past_key_values=past_kvs, use_cache=use_cache), False
|
356 |
else:
|
357 |
+
out = self(input_ids[:, -1:], past_key_values=past_kvs, use_cache=use_cache,
|
358 |
+
start_pos=input_ids.shape[1] - 1)
|
359 |
+
logits, past_kvs = out.logits[:, -1, :], out.past_key_values
|
360 |
+
logits[:, list(set(input_ids.tolist()[0]))] /= rp
|
361 |
+
logits /= (temperature + 1e-9)
|
362 |
+
if top_p is not None and top_p < 1.0:
|
363 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
364 |
+
sorted_probs = F.softmax(sorted_logits, dim=-1)
|
365 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
366 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
367 |
+
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
|
368 |
+
sorted_indices_to_remove[:, 0] = False
|
369 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
370 |
+
logits[indices_to_remove] = -float('Inf')
|
371 |
+
input_ids_next = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
372 |
+
input_ids = torch.cat((input_ids, input_ids_next), dim=1)
|
373 |
+
yield input_ids[:, start:]
|
374 |
+
if input_ids_next.item() == eos_token_id:
|
|
|
|
|
375 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|