File size: 7,207 Bytes
bfde522
 
84629bb
bfde522
84629bb
 
 
 
 
 
 
 
bfde522
4aa20d9
84629bb
4aa20d9
84629bb
4aa20d9
 
84629bb
4aa20d9
84629bb
4aa20d9
 
84629bb
4aa20d9
84629bb
4aa20d9
 
84629bb
 
 
4aa20d9
84629bb
4aa20d9
 
84629bb
4aa20d9
84629bb
4aa20d9
 
84629bb
 
 
4aa20d9
84629bb
4aa20d9
 
84629bb
4aa20d9
84629bb
4aa20d9
 
84629bb
 
 
4aa20d9
84629bb
4aa20d9
 
84629bb
 
 
4aa20d9
84629bb
4aa20d9
 
84629bb
 
 
4aa20d9
84629bb
4aa20d9
 
84629bb
bfde522
 
84629bb
bfde522
84629bb
 
bfde522
 
84629bb
bfde522
84629bb
bfde522
 
 
 
 
 
 
 
 
 
84629bb
bfde522
 
 
4aa20d9
bfde522
07b1dbd
 
84629bb
 
 
07b1dbd
84629bb
 
 
07b1dbd
84629bb
 
 
 
bfde522
 
 
 
 
 
 
a905f1c
625c781
bfde522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625c781
bfde522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84629bb
bfde522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84629bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
license: other
base_model: stabilityai/stable-diffusion-3-medium-diffusers
tags:
- sd3
- sd3-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: A swift and agile elven archer perched in a tree, nocking an arrow.
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_1_0.png
- text: A cyberpunk hunter in neon-lit city alleys, armed with a high-tech rifle.
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_2_0.png
- text: A mighty fantasy knight in gleaming armor, wielding a sword and shield.
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_3_0.png
- text: >-
    A space pirate captain standing on the bridge of a starship, ready for
    adventure.
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_4_0.png
- text: A powerful demonic sorcerer casting a spell in a dark, mysterious chamber.
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_5_0.png
- text: >-
    A friendly robotic assistant with a sleek design, helping a player navigate
    a game.
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_6_0.png
- text: A stealthy ninja warrior crouching in the shadows, ready to strike.
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_7_0.png
- text: >-
    A group of survivors in a post-apocalyptic world, fending off a zombie
    horde.
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_8_0.png
- text: >-
    A brave dragon tamer soaring through the sky on the back of a majestic
    dragon.
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_9_0.png
- text: >-
    A wise medieval wizard in a towering castle, studying ancient tomes of
    magic.
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_10_0.png
pipeline_tag: text-to-image
---

# SD3M/simpletuner-lora (Text2Img)

This is a LyCORIS adapter minicing the art style of John Singer Sargent,
derived from [stabilityai/stable-diffusion-3-medium-diffusers](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers).


The main validation prompt used during training:
```
A swift and agile elven archer perched in a tree, nocking an arrow.
```


## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `42`
- Resolution: `1024x1024`
- Skip-layer guidance: `None`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:

<div style="display: flex; flex-wrap: wrap; gap: 10px;">
  <div style="flex: 1 1 30%;">
    <img src="./assets/image_1_0.png" alt="A swift and agile elven archer perched in a tree, nocking an arrow" style="width: 100%;">
    <p>prompt: A swift and agile elven archer perched in a tree, nocking an arrow.</p>
  </div>
  <div style="flex: 1 1 30%;">
    <img src="./assets/image_5_0.png" alt="A powerful demonic sorcerer casting a spell in a dark, mysterious chamber" style="width: 100%;">
    <p>prompt: A powerful demonic sorcerer casting a spell in a dark, mysterious chamber.</p>
  </div>
  <div style="flex: 1 1 30%;">
    <img src="./assets/image_10_0.png" alt="A wise medieval wizard in a towering castle, studying ancient tomes of magic" style="width: 100%;">
    <p>prompt: A wise medieval wizard in a towering castle, studying ancient tomes of magic.</p>
  </div>
</div>

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 10
- Training steps: 10000
- Learning rate: 0.0001
  - Learning rate schedule: polynomial
  - Warmup steps: 100
- Max grad norm: 0.01
- Effective batch size: 1
  - Micro-batch size: 1
  - Gradient accumulation steps: 1
  - Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 10.0%


### LyCORIS Config:
```json
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            },
            "FeedForward": {
                "factor": 8
            }
        }
    }
}
```

## Datasets

### wikiart_sargent
- Repeats: 0
- Total number of images: 920
- Total number of aspect buckets: 4
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No


## Inference


```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'stabilityai/stable-diffusion-3-medium-diffusers'
adapter_repo_id = 'jimchoi/simpletuner-lora'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()

prompt = "A swift and agile elven archer perched in a tree, nocking an arrow."
negative_prompt = 'blurry, cropped, ugly'

## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```