File size: 1,878 Bytes
4c9c6d0
 
a843f19
 
 
 
 
4c9c6d0
a843f19
 
 
 
 
 
 
 
 
 
 
d907c40
 
a843f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d907c40
a843f19
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
license: cc-by-4.0
datasets:
- jihyoung/ConversationChronicles
language:
- en
pipeline_tag: conversational
---

# 👫ReBot - Generation Module⏰

ReBot is a novel multi-session dialgoue model which can generate dialogue with chronological dynamics! ReBot consists two modules: (1) chronological summarization module; (2) dialogue generation module.

**This repoistory for dialogue generation module.** You can check summarization module on [this repoistory](https://huggingface.co/jihyoung/rebot-summarization).

🚨 Please be cautious when testing our model with the Hosted Inference API. Our model takes sequences as input, so you should provide sequences as input through the API as well.

## Model description

+ Paper: [Conversation Chronicles: Towards Diverse Temporal and Relational Dynamics in Multi-Session Conversations](https://arxiv.org/abs/2310.13420)
+ Dataset : [Conversation Chronicles](https://huggingface.co/datasets/jihyoung/ConversationChronicles)
+ Generation Module of Model : this repoistory
+ Summarization Module of Model : [chronological summarization module](https://huggingface.co/jihyoung/rebot-summarization)

## Load with Transformers

To load our dataset with Hugging Face Transformers, please use the following code:

```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("jihyoung/rebot-generation")
model = AutoModelForSeq2SeqLM.from_pretrained("jihyoung/rebot-generation")
```

## Citation Information

```
@inproceedings{jang2023conversation,
    title={Conversation Chronicles: Towards Diverse Temporal and Relational Dynamics in Multi-Session Conversations},
    author={Jihyoung Jang, MinSeong Boo, Hyounghun Kim},
    booktitle={The 2023 Conference on Empirical Methods in Natural Language Processing},
    year={2023},
    url={https://arxiv.org/abs/2310.13420}
}
```