--- license: other base_model: nvidia/mit-b4 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-oct-22 results: [] --- # segformer-b0-finetuned-segments-sidewalk-oct-22 This model is a fine-tuned version of [nvidia/mit-b4](https://huggingface.co/nvidia/mit-b4) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 0.0243 - Mean Iou: 0.9582 - Mean Accuracy: 0.9792 - Overall Accuracy: 0.9965 - Accuracy Unlabeled: 0.9981 - Accuracy Numero: 0.9603 - Iou Unlabeled: 0.9963 - Iou Numero: 0.9200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Numero | Iou Unlabeled | Iou Numero | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:----------:| | 0.1406 | 5.0 | 20 | 0.1672 | 0.7389 | 0.7497 | 0.9790 | 1.0000 | 0.4994 | 0.9785 | 0.4993 | | 0.045 | 10.0 | 40 | 0.0498 | 0.9398 | 0.9476 | 0.9951 | 0.9994 | 0.8958 | 0.9949 | 0.8846 | | 0.0361 | 15.0 | 60 | 0.0296 | 0.9575 | 0.9811 | 0.9964 | 0.9978 | 0.9643 | 0.9963 | 0.9187 | | 0.026 | 20.0 | 80 | 0.0243 | 0.9582 | 0.9792 | 0.9965 | 0.9981 | 0.9603 | 0.9963 | 0.9200 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0