Commit
·
37eef19
1
Parent(s):
0fce40b
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: mobilenet_v2_1.0_224-cxr-view
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.8154897494305239
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# mobilenet_v2_1.0_224-cxr-view
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.4565
|
35 |
+
- Accuracy: 0.8155
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-06
|
55 |
+
- train_batch_size: 4
|
56 |
+
- eval_batch_size: 4
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 16
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 30
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 0.7049 | 1.0 | 109 | 0.6746 | 0.7449 |
|
70 |
+
| 0.6565 | 2.0 | 219 | 0.6498 | 0.6743 |
|
71 |
+
| 0.5699 | 3.0 | 328 | 0.5730 | 0.7995 |
|
72 |
+
| 0.5702 | 4.0 | 438 | 0.5119 | 0.8087 |
|
73 |
+
| 0.4849 | 5.0 | 547 | 0.4356 | 0.8679 |
|
74 |
+
| 0.356 | 6.0 | 657 | 0.4641 | 0.8087 |
|
75 |
+
| 0.3713 | 7.0 | 766 | 0.3407 | 0.8679 |
|
76 |
+
| 0.4571 | 8.0 | 876 | 0.4896 | 0.7813 |
|
77 |
+
| 0.3896 | 9.0 | 985 | 0.3124 | 0.8884 |
|
78 |
+
| 0.3422 | 10.0 | 1095 | 0.2791 | 0.9271 |
|
79 |
+
| 0.3358 | 11.0 | 1204 | 0.3998 | 0.8246 |
|
80 |
+
| 0.3658 | 12.0 | 1314 | 0.2716 | 0.9066 |
|
81 |
+
| 0.4547 | 13.0 | 1423 | 0.5828 | 0.7973 |
|
82 |
+
| 0.2615 | 14.0 | 1533 | 0.3446 | 0.8542 |
|
83 |
+
| 0.377 | 15.0 | 1642 | 0.6322 | 0.7312 |
|
84 |
+
| 0.2846 | 16.0 | 1752 | 0.2621 | 0.9248 |
|
85 |
+
| 0.3433 | 17.0 | 1861 | 0.3709 | 0.8383 |
|
86 |
+
| 0.2851 | 18.0 | 1971 | 0.8134 | 0.7312 |
|
87 |
+
| 0.2298 | 19.0 | 2080 | 0.4324 | 0.8314 |
|
88 |
+
| 0.3916 | 20.0 | 2190 | 0.3631 | 0.8360 |
|
89 |
+
| 0.3049 | 21.0 | 2299 | 0.3405 | 0.8633 |
|
90 |
+
| 0.3068 | 22.0 | 2409 | 0.2585 | 0.9021 |
|
91 |
+
| 0.3091 | 23.0 | 2518 | 0.2278 | 0.9294 |
|
92 |
+
| 0.2749 | 24.0 | 2628 | 0.2963 | 0.9043 |
|
93 |
+
| 0.3543 | 25.0 | 2737 | 0.2637 | 0.8975 |
|
94 |
+
| 0.3024 | 26.0 | 2847 | 0.2966 | 0.8998 |
|
95 |
+
| 0.2593 | 27.0 | 2956 | 0.3842 | 0.8542 |
|
96 |
+
| 0.1979 | 28.0 | 3066 | 0.2711 | 0.8884 |
|
97 |
+
| 0.2549 | 29.0 | 3175 | 0.3145 | 0.8633 |
|
98 |
+
| 0.3216 | 29.86 | 3270 | 0.4565 | 0.8155 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.28.0
|
104 |
+
- Pytorch 2.0.1+cu117
|
105 |
+
- Datasets 2.14.4
|
106 |
+
- Tokenizers 0.13.3
|