jayanthspratap commited on
Commit
37eef19
·
1 Parent(s): 0fce40b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: mobilenet_v2_1.0_224-cxr-view
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8154897494305239
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # mobilenet_v2_1.0_224-cxr-view
31
+
32
+ This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.4565
35
+ - Accuracy: 0.8155
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-06
55
+ - train_batch_size: 4
56
+ - eval_batch_size: 4
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 16
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 30
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.7049 | 1.0 | 109 | 0.6746 | 0.7449 |
70
+ | 0.6565 | 2.0 | 219 | 0.6498 | 0.6743 |
71
+ | 0.5699 | 3.0 | 328 | 0.5730 | 0.7995 |
72
+ | 0.5702 | 4.0 | 438 | 0.5119 | 0.8087 |
73
+ | 0.4849 | 5.0 | 547 | 0.4356 | 0.8679 |
74
+ | 0.356 | 6.0 | 657 | 0.4641 | 0.8087 |
75
+ | 0.3713 | 7.0 | 766 | 0.3407 | 0.8679 |
76
+ | 0.4571 | 8.0 | 876 | 0.4896 | 0.7813 |
77
+ | 0.3896 | 9.0 | 985 | 0.3124 | 0.8884 |
78
+ | 0.3422 | 10.0 | 1095 | 0.2791 | 0.9271 |
79
+ | 0.3358 | 11.0 | 1204 | 0.3998 | 0.8246 |
80
+ | 0.3658 | 12.0 | 1314 | 0.2716 | 0.9066 |
81
+ | 0.4547 | 13.0 | 1423 | 0.5828 | 0.7973 |
82
+ | 0.2615 | 14.0 | 1533 | 0.3446 | 0.8542 |
83
+ | 0.377 | 15.0 | 1642 | 0.6322 | 0.7312 |
84
+ | 0.2846 | 16.0 | 1752 | 0.2621 | 0.9248 |
85
+ | 0.3433 | 17.0 | 1861 | 0.3709 | 0.8383 |
86
+ | 0.2851 | 18.0 | 1971 | 0.8134 | 0.7312 |
87
+ | 0.2298 | 19.0 | 2080 | 0.4324 | 0.8314 |
88
+ | 0.3916 | 20.0 | 2190 | 0.3631 | 0.8360 |
89
+ | 0.3049 | 21.0 | 2299 | 0.3405 | 0.8633 |
90
+ | 0.3068 | 22.0 | 2409 | 0.2585 | 0.9021 |
91
+ | 0.3091 | 23.0 | 2518 | 0.2278 | 0.9294 |
92
+ | 0.2749 | 24.0 | 2628 | 0.2963 | 0.9043 |
93
+ | 0.3543 | 25.0 | 2737 | 0.2637 | 0.8975 |
94
+ | 0.3024 | 26.0 | 2847 | 0.2966 | 0.8998 |
95
+ | 0.2593 | 27.0 | 2956 | 0.3842 | 0.8542 |
96
+ | 0.1979 | 28.0 | 3066 | 0.2711 | 0.8884 |
97
+ | 0.2549 | 29.0 | 3175 | 0.3145 | 0.8633 |
98
+ | 0.3216 | 29.86 | 3270 | 0.4565 | 0.8155 |
99
+
100
+
101
+ ### Framework versions
102
+
103
+ - Transformers 4.28.0
104
+ - Pytorch 2.0.1+cu117
105
+ - Datasets 2.14.4
106
+ - Tokenizers 0.13.3