--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: convnext-large-224-22k-1k-FV2-finetuned-memes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.866306027820711 - name: Precision type: precision value: 0.8617341777601428 - name: Recall type: recall value: 0.866306027820711 - name: F1 type: f1 value: 0.8629450778711495 --- # convnext-large-224-22k-1k-FV2-finetuned-memes This model is a fine-tuned version of [facebook/convnext-large-224-22k-1k](https://huggingface.co/facebook/convnext-large-224-22k-1k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4290 - Accuracy: 0.8663 - Precision: 0.8617 - Recall: 0.8663 - F1: 0.8629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8992 | 0.99 | 20 | 0.6455 | 0.7658 | 0.7512 | 0.7658 | 0.7534 | | 0.4245 | 1.99 | 40 | 0.4008 | 0.8539 | 0.8680 | 0.8539 | 0.8541 | | 0.2054 | 2.99 | 60 | 0.3245 | 0.8694 | 0.8631 | 0.8694 | 0.8650 | | 0.1102 | 3.99 | 80 | 0.3231 | 0.8671 | 0.8624 | 0.8671 | 0.8645 | | 0.0765 | 4.99 | 100 | 0.3882 | 0.8563 | 0.8603 | 0.8563 | 0.8556 | | 0.0642 | 5.99 | 120 | 0.4133 | 0.8601 | 0.8604 | 0.8601 | 0.8598 | | 0.0574 | 6.99 | 140 | 0.3889 | 0.8694 | 0.8657 | 0.8694 | 0.8667 | | 0.0526 | 7.99 | 160 | 0.4145 | 0.8655 | 0.8705 | 0.8655 | 0.8670 | | 0.0468 | 8.99 | 180 | 0.4256 | 0.8679 | 0.8642 | 0.8679 | 0.8650 | | 0.0472 | 9.99 | 200 | 0.4290 | 0.8663 | 0.8617 | 0.8663 | 0.8629 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1.dev0 - Tokenizers 0.13.1