File size: 1,996 Bytes
cdf5fbb
 
 
a322651
cdf5fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a322651
cdf5fbb
13ae495
 
 
 
e307062
cdf5fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a322651
 
3e78f1e
cdf5fbb
 
 
85245da
cdf5fbb
 
 
3e78f1e
 
85245da
 
 
 
 
cdf5fbb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---

library_name: transformers
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: results
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0457
- Accuracy: 0.9875
- F1: 0.9868
- Precision: 0.9865
- Recall: 0.9872

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.0879        | 1.0   | 739  | 0.0471          | 0.9871   | 0.9865 | 0.9837    | 0.9893 |
| 0.0443        | 2.0   | 1478 | 0.0391          | 0.9895   | 0.9890 | 0.9872    | 0.9908 |
| 0.0241        | 3.0   | 2217 | 0.0615          | 0.9871   | 0.9866 | 0.9803    | 0.9929 |
| 0.0103        | 4.0   | 2956 | 0.0792          | 0.9868   | 0.9861 | 0.9893    | 0.9829 |
| 0.0029        | 5.0   | 3695 | 0.0767          | 0.9885   | 0.9879 | 0.9886    | 0.9872 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.4.1
- Datasets 2.19.2
- Tokenizers 0.20.1