Upload BERT hierarchical classification model for grades 1, 2 and 3
Browse files- README.md +26 -0
- best_model.pt +3 -0
- config.json +24 -0
- label_encoders.joblib +3 -0
- modeling.py +33 -0
- special_tokens_map.json +7 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# BERT Hierarchical Classification Model
|
3 |
+
|
4 |
+
This model is a fine-tuned BERT-based model for hierarchical classification of Common Core Standard questions.
|
5 |
+
|
6 |
+
## Model Description
|
7 |
+
|
8 |
+
The model classifies input texts into the following hierarchical levels:
|
9 |
+
|
10 |
+
- Grade
|
11 |
+
- Domain
|
12 |
+
- Cluster
|
13 |
+
- Standard
|
14 |
+
|
15 |
+
## Files
|
16 |
+
|
17 |
+
- `config.json`: Model configuration.
|
18 |
+
- `pytorch_model.bin`: Model weights.
|
19 |
+
- `modeling.py`: Model class definition.
|
20 |
+
- `tokenizer/`: Tokenizer files.
|
21 |
+
- `label_encoders.joblib`: Label encoders for mapping predictions back to labels.
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
|
25 |
+
See instructions below on how to load and use the model.
|
26 |
+
|
best_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:264a0736580bdc21f02adf05f262b6bb233a7457df11fa950743f6a6abaf6afa
|
3 |
+
size 438388429
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_probs_dropout_prob": 0.1,
|
3 |
+
"classifier_dropout": null,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_dropout_prob": 0.1,
|
6 |
+
"hidden_size": 768,
|
7 |
+
"initializer_range": 0.02,
|
8 |
+
"intermediate_size": 3072,
|
9 |
+
"layer_norm_eps": 1e-12,
|
10 |
+
"max_position_embeddings": 512,
|
11 |
+
"model_type": "bert",
|
12 |
+
"num_attention_heads": 12,
|
13 |
+
"num_clusters": 20,
|
14 |
+
"num_domains": 8,
|
15 |
+
"num_grades": 9,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"num_standards": 85,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"transformers_version": "4.48.1",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
label_encoders.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa3a8cc65c51b62af563d2614004a8f84d785b52e40db031e4f7e80230b1259d
|
3 |
+
size 2962
|
modeling.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers import BertModel, BertConfig
|
5 |
+
|
6 |
+
class BertHierarchicalClassification(nn.Module):
|
7 |
+
def __init__(self, config):
|
8 |
+
super(BertHierarchicalClassification, self).__init__()
|
9 |
+
self.bert = BertModel(config)
|
10 |
+
hidden_size = config.hidden_size
|
11 |
+
|
12 |
+
self.num_grades = config.num_grades
|
13 |
+
self.num_domains = config.num_domains
|
14 |
+
self.num_clusters = config.num_clusters
|
15 |
+
self.num_standards = config.num_standards
|
16 |
+
|
17 |
+
self.grade_classifier = nn.Linear(hidden_size, self.num_grades)
|
18 |
+
self.domain_classifier = nn.Linear(hidden_size, self.num_domains)
|
19 |
+
self.cluster_classifier = nn.Linear(hidden_size, self.num_clusters)
|
20 |
+
self.standard_classifier = nn.Linear(hidden_size, self.num_standards)
|
21 |
+
self.dropout = nn.Dropout(0.1)
|
22 |
+
|
23 |
+
def forward(self, input_ids, attention_mask):
|
24 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
25 |
+
pooled_output = outputs.pooler_output
|
26 |
+
pooled_output = self.dropout(pooled_output)
|
27 |
+
|
28 |
+
grade_logits = self.grade_classifier(pooled_output)
|
29 |
+
domain_logits = self.domain_classifier(pooled_output)
|
30 |
+
cluster_logits = self.cluster_classifier(pooled_output)
|
31 |
+
standard_logits = self.standard_classifier(pooled_output)
|
32 |
+
|
33 |
+
return grade_logits, domain_logits, cluster_logits, standard_logits
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|