|
import glob |
|
import os |
|
import shutil |
|
|
|
from tests import get_device_id, get_tests_output_path, run_cli |
|
from TTS.vocoder.configs import MelganConfig |
|
|
|
config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json") |
|
output_path = os.path.join(get_tests_output_path(), "train_outputs") |
|
|
|
config = MelganConfig( |
|
batch_size=4, |
|
eval_batch_size=4, |
|
num_loader_workers=0, |
|
num_eval_loader_workers=0, |
|
run_eval=True, |
|
test_delay_epochs=-1, |
|
epochs=1, |
|
seq_len=2048, |
|
eval_split_size=1, |
|
print_step=1, |
|
discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]}, |
|
print_eval=True, |
|
data_path="tests/data/ljspeech", |
|
output_path=output_path, |
|
) |
|
config.audio.do_trim_silence = True |
|
config.audio.trim_db = 60 |
|
config.save_json(config_path) |
|
|
|
|
|
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} " |
|
run_cli(command_train) |
|
|
|
|
|
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) |
|
|
|
|
|
command_train = ( |
|
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} " |
|
) |
|
run_cli(command_train) |
|
shutil.rmtree(continue_path) |
|
|