|
import glob |
|
import json |
|
import os |
|
import shutil |
|
|
|
from trainer import get_last_checkpoint |
|
|
|
from tests import get_device_id, get_tests_output_path, run_cli |
|
from TTS.config.shared_configs import BaseDatasetConfig |
|
from TTS.tts.configs.vits_config import VitsConfig |
|
|
|
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") |
|
output_path = os.path.join(get_tests_output_path(), "train_outputs") |
|
|
|
|
|
dataset_config_en = BaseDatasetConfig( |
|
formatter="ljspeech_test", |
|
meta_file_train="metadata.csv", |
|
meta_file_val="metadata.csv", |
|
path="tests/data/ljspeech", |
|
language="en", |
|
) |
|
|
|
dataset_config_pt = BaseDatasetConfig( |
|
formatter="ljspeech_test", |
|
meta_file_train="metadata.csv", |
|
meta_file_val="metadata.csv", |
|
path="tests/data/ljspeech", |
|
language="pt-br", |
|
) |
|
|
|
config = VitsConfig( |
|
batch_size=2, |
|
eval_batch_size=2, |
|
num_loader_workers=0, |
|
num_eval_loader_workers=0, |
|
text_cleaner="multilingual_cleaners", |
|
use_phonemes=False, |
|
phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", |
|
run_eval=True, |
|
test_delay_epochs=-1, |
|
epochs=1, |
|
print_step=1, |
|
print_eval=True, |
|
test_sentences=[ |
|
["Be a voice, not an echo.", "ljspeech-0", None, "en"], |
|
["Be a voice, not an echo.", "ljspeech-1", None, "pt-br"], |
|
], |
|
datasets=[dataset_config_en, dataset_config_en, dataset_config_en, dataset_config_pt], |
|
) |
|
|
|
config.audio.do_trim_silence = True |
|
config.audio.trim_db = 60 |
|
|
|
|
|
config.model_args.use_language_embedding = True |
|
config.use_language_embedding = True |
|
|
|
|
|
config.model_args.use_speaker_embedding = False |
|
config.use_speaker_embedding = False |
|
|
|
|
|
config.model_args.use_d_vector_file = True |
|
config.use_d_vector_file = True |
|
config.model_args.d_vector_file = ["tests/data/ljspeech/speakers.json"] |
|
config.d_vector_file = ["tests/data/ljspeech/speakers.json"] |
|
config.model_args.d_vector_dim = 256 |
|
config.d_vector_dim = 256 |
|
|
|
|
|
config.model_args.use_sdp = True |
|
config.use_sdp = True |
|
|
|
|
|
config.use_language_weighted_sampler = True |
|
config.language_weighted_sampler_alpha = 10 |
|
config.use_speaker_weighted_sampler = True |
|
config.speaker_weighted_sampler_alpha = 5 |
|
|
|
config.save_json(config_path) |
|
|
|
|
|
command_train = ( |
|
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " |
|
f"--coqpit.output_path {output_path} " |
|
"--coqpit.test_delay_epochs 0" |
|
) |
|
run_cli(command_train) |
|
|
|
|
|
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) |
|
|
|
|
|
continue_config_path = os.path.join(continue_path, "config.json") |
|
continue_restore_path, _ = get_last_checkpoint(continue_path) |
|
out_wav_path = os.path.join(get_tests_output_path(), "output.wav") |
|
speaker_id = "ljspeech-1" |
|
languae_id = "en" |
|
continue_speakers_path = config.d_vector_file |
|
continue_languages_path = os.path.join(continue_path, "language_ids.json") |
|
|
|
|
|
with open(continue_config_path, "r", encoding="utf-8") as f: |
|
config_loaded = json.load(f) |
|
assert config_loaded["characters"] is not None |
|
assert config_loaded["output_path"] in continue_path |
|
assert config_loaded["test_delay_epochs"] == 0 |
|
|
|
|
|
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --language_ids_file_path {continue_languages_path} --language_idx {languae_id} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" |
|
run_cli(inference_command) |
|
|
|
|
|
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " |
|
run_cli(command_train) |
|
shutil.rmtree(continue_path) |
|
|