|
import os |
|
import shutil |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import DataLoader |
|
|
|
from tests import get_tests_data_path, get_tests_output_path |
|
from TTS.tts.configs.shared_configs import BaseDatasetConfig, BaseTTSConfig |
|
from TTS.tts.datasets import TTSDataset, load_tts_samples |
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
|
|
|
|
OUTPATH = os.path.join(get_tests_output_path(), "loader_tests/") |
|
os.makedirs(OUTPATH, exist_ok=True) |
|
|
|
|
|
c = BaseTTSConfig(text_cleaner="english_cleaners", num_loader_workers=0, batch_size=2, use_noise_augment=False) |
|
c.r = 5 |
|
c.data_path = os.path.join(get_tests_data_path(), "ljspeech/") |
|
ok_ljspeech = os.path.exists(c.data_path) |
|
|
|
dataset_config = BaseDatasetConfig( |
|
formatter="ljspeech_test", |
|
meta_file_train="metadata.csv", |
|
meta_file_val=None, |
|
path=c.data_path, |
|
language="en", |
|
) |
|
|
|
DATA_EXIST = True |
|
if not os.path.exists(c.data_path): |
|
DATA_EXIST = False |
|
|
|
print(" > Dynamic data loader test: {}".format(DATA_EXIST)) |
|
|
|
|
|
class TestTTSDataset(unittest.TestCase): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.max_loader_iter = 4 |
|
self.ap = AudioProcessor(**c.audio) |
|
|
|
def _create_dataloader(self, batch_size, r, bgs, start_by_longest=False): |
|
|
|
meta_data_train, meta_data_eval = load_tts_samples(dataset_config, eval_split=True, eval_split_size=0.2) |
|
items = meta_data_train + meta_data_eval |
|
|
|
tokenizer, _ = TTSTokenizer.init_from_config(c) |
|
dataset = TTSDataset( |
|
outputs_per_step=r, |
|
compute_linear_spec=True, |
|
return_wav=True, |
|
tokenizer=tokenizer, |
|
ap=self.ap, |
|
samples=items, |
|
batch_group_size=bgs, |
|
min_text_len=c.min_text_len, |
|
max_text_len=c.max_text_len, |
|
min_audio_len=c.min_audio_len, |
|
max_audio_len=c.max_audio_len, |
|
start_by_longest=start_by_longest, |
|
) |
|
dataloader = DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
shuffle=False, |
|
collate_fn=dataset.collate_fn, |
|
drop_last=True, |
|
num_workers=c.num_loader_workers, |
|
) |
|
return dataloader, dataset |
|
|
|
def test_loader(self): |
|
if ok_ljspeech: |
|
dataloader, dataset = self._create_dataloader(1, 1, 0) |
|
|
|
for i, data in enumerate(dataloader): |
|
if i == self.max_loader_iter: |
|
break |
|
text_input = data["token_id"] |
|
_ = data["token_id_lengths"] |
|
speaker_name = data["speaker_names"] |
|
linear_input = data["linear"] |
|
mel_input = data["mel"] |
|
mel_lengths = data["mel_lengths"] |
|
_ = data["stop_targets"] |
|
_ = data["item_idxs"] |
|
wavs = data["waveform"] |
|
|
|
neg_values = text_input[text_input < 0] |
|
check_count = len(neg_values) |
|
|
|
|
|
self.assertEqual(check_count, 0) |
|
self.assertEqual(linear_input.shape[0], mel_input.shape[0], c.batch_size) |
|
self.assertEqual(linear_input.shape[2], self.ap.fft_size // 2 + 1) |
|
self.assertEqual(mel_input.shape[2], c.audio["num_mels"]) |
|
self.assertEqual(wavs.shape[1], mel_input.shape[1] * c.audio.hop_length) |
|
self.assertIsInstance(speaker_name[0], str) |
|
|
|
|
|
mel_new = self.ap.melspectrogram(wavs[0].squeeze().numpy()) |
|
|
|
mel_dataloader = mel_input[0].T.numpy()[:, : mel_lengths[0]] |
|
|
|
mel_new = mel_new[:, : mel_lengths[0]] |
|
ignore_seg = -(1 + c.audio.win_length // c.audio.hop_length) |
|
mel_diff = (mel_new[:, : mel_input.shape[1]] - mel_input[0].T.numpy())[:, 0:ignore_seg] |
|
self.assertLess(abs(mel_diff.sum()), 1e-5) |
|
|
|
|
|
if self.ap.symmetric_norm: |
|
self.assertLessEqual(mel_input.max(), self.ap.max_norm) |
|
self.assertGreaterEqual( |
|
mel_input.min(), -self.ap.max_norm |
|
) |
|
self.assertLess(mel_input.min(), 0) |
|
else: |
|
self.assertLessEqual(mel_input.max(), self.ap.max_norm) |
|
self.assertGreaterEqual(mel_input.min(), 0) |
|
|
|
def test_batch_group_shuffle(self): |
|
if ok_ljspeech: |
|
dataloader, dataset = self._create_dataloader(2, c.r, 16) |
|
last_length = 0 |
|
frames = dataset.samples |
|
for i, data in enumerate(dataloader): |
|
if i == self.max_loader_iter: |
|
break |
|
mel_lengths = data["mel_lengths"] |
|
avg_length = mel_lengths.numpy().mean() |
|
dataloader.dataset.preprocess_samples() |
|
is_items_reordered = False |
|
for idx, item in enumerate(dataloader.dataset.samples): |
|
if item != frames[idx]: |
|
is_items_reordered = True |
|
break |
|
self.assertGreaterEqual(avg_length, last_length) |
|
self.assertTrue(is_items_reordered) |
|
|
|
def test_start_by_longest(self): |
|
"""Test start_by_longest option. |
|
|
|
Ther first item of the fist batch must be longer than all the other items. |
|
""" |
|
if ok_ljspeech: |
|
dataloader, _ = self._create_dataloader(2, c.r, 0, True) |
|
dataloader.dataset.preprocess_samples() |
|
for i, data in enumerate(dataloader): |
|
if i == self.max_loader_iter: |
|
break |
|
mel_lengths = data["mel_lengths"] |
|
if i == 0: |
|
max_len = mel_lengths[0] |
|
print(mel_lengths) |
|
self.assertTrue(all(max_len >= mel_lengths)) |
|
|
|
def test_padding_and_spectrograms(self): |
|
def check_conditions(idx, linear_input, mel_input, stop_target, mel_lengths): |
|
self.assertNotEqual(linear_input[idx, -1].sum(), 0) |
|
self.assertNotEqual(linear_input[idx, -2].sum(), 0) |
|
self.assertNotEqual(mel_input[idx, -1].sum(), 0) |
|
self.assertNotEqual(mel_input[idx, -2].sum(), 0) |
|
self.assertEqual(stop_target[idx, -1], 1) |
|
self.assertEqual(stop_target[idx, -2], 0) |
|
self.assertEqual(stop_target[idx].sum(), 1) |
|
self.assertEqual(len(mel_lengths.shape), 1) |
|
self.assertEqual(mel_lengths[idx], linear_input[idx].shape[0]) |
|
self.assertEqual(mel_lengths[idx], mel_input[idx].shape[0]) |
|
|
|
if ok_ljspeech: |
|
dataloader, _ = self._create_dataloader(1, 1, 0) |
|
|
|
for i, data in enumerate(dataloader): |
|
if i == self.max_loader_iter: |
|
break |
|
linear_input = data["linear"] |
|
mel_input = data["mel"] |
|
mel_lengths = data["mel_lengths"] |
|
stop_target = data["stop_targets"] |
|
item_idx = data["item_idxs"] |
|
|
|
|
|
wav = np.asarray(self.ap.load_wav(item_idx[0]), dtype=np.float32) |
|
mel = self.ap.melspectrogram(wav).astype("float32") |
|
mel = torch.FloatTensor(mel).contiguous() |
|
mel_dl = mel_input[0] |
|
|
|
|
|
|
|
self.assertLess(abs(mel.T - mel_dl).max(), 1e-5) |
|
|
|
|
|
mel_spec = mel_input[0].cpu().numpy() |
|
wav = self.ap.inv_melspectrogram(mel_spec.T) |
|
self.ap.save_wav(wav, OUTPATH + "/mel_inv_dataloader.wav") |
|
shutil.copy(item_idx[0], OUTPATH + "/mel_target_dataloader.wav") |
|
|
|
|
|
linear_spec = linear_input[0].cpu().numpy() |
|
wav = self.ap.inv_spectrogram(linear_spec.T) |
|
self.ap.save_wav(wav, OUTPATH + "/linear_inv_dataloader.wav") |
|
shutil.copy(item_idx[0], OUTPATH + "/linear_target_dataloader.wav") |
|
|
|
|
|
check_conditions(0, linear_input, mel_input, stop_target, mel_lengths) |
|
|
|
|
|
dataloader, _ = self._create_dataloader(2, 1, 0) |
|
|
|
for i, data in enumerate(dataloader): |
|
if i == self.max_loader_iter: |
|
break |
|
linear_input = data["linear"] |
|
mel_input = data["mel"] |
|
mel_lengths = data["mel_lengths"] |
|
stop_target = data["stop_targets"] |
|
item_idx = data["item_idxs"] |
|
|
|
|
|
if mel_lengths[0] > mel_lengths[1]: |
|
idx = 0 |
|
else: |
|
idx = 1 |
|
|
|
|
|
check_conditions(idx, linear_input, mel_input, stop_target, mel_lengths) |
|
|
|
|
|
self.assertEqual(linear_input[1 - idx, -1].sum(), 0) |
|
self.assertEqual(mel_input[1 - idx, -1].sum(), 0) |
|
self.assertEqual(stop_target[1, mel_lengths[1] - 1], 1) |
|
self.assertEqual(stop_target[1, mel_lengths[1] :].sum(), stop_target.shape[1] - mel_lengths[1]) |
|
self.assertEqual(len(mel_lengths.shape), 1) |
|
|
|
|
|
|
|
|
|
|