ilevytate commited on
Commit
96289f5
·
verified ·
1 Parent(s): de781f6

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - merge
4
+ - mergekit
5
+ - lazymergekit
6
+ - athirdpath/Orca-2-13b-Alpaca-Uncensored
7
+ - garage-bAInd/Platypus2-13B
8
+ - WizardLM/WizardMath-13B-V1.0
9
+ base_model:
10
+ - athirdpath/Orca-2-13b-Alpaca-Uncensored
11
+ - garage-bAInd/Platypus2-13B
12
+ - WizardLM/WizardMath-13B-V1.0
13
+ ---
14
+
15
+ # WizardAlpacaBlend-13B-TieCast
16
+
17
+ WizardAlpacaBlend-13B-TieCast is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
18
+ * [athirdpath/Orca-2-13b-Alpaca-Uncensored](https://huggingface.co/athirdpath/Orca-2-13b-Alpaca-Uncensored)
19
+ * [garage-bAInd/Platypus2-13B](https://huggingface.co/garage-bAInd/Platypus2-13B)
20
+ * [WizardLM/WizardMath-13B-V1.0](https://huggingface.co/WizardLM/WizardMath-13B-V1.0)
21
+
22
+ ## 🧩 Configuration
23
+
24
+ ```yaml
25
+ models:
26
+ - model: athirdpath/Orca-2-13b-Alpaca-Uncensored
27
+ parameters:
28
+ density: [1, 0.7, 0.1] # density gradient
29
+ weight: 1.0
30
+ - model: garage-bAInd/Platypus2-13B
31
+ parameters:
32
+ density: 0.5
33
+ weight: [0, 0.3, 0.7, 1] # weight gradient
34
+ - model: WizardLM/WizardMath-13B-V1.0
35
+ parameters:
36
+ density: 0.33
37
+ weight:
38
+ - filter: mlp
39
+ value: 0.5
40
+ - value: 0
41
+ merge_method: ties
42
+ base_model: TheBloke/Llama-2-13B-fp16
43
+ parameters:
44
+ normalize: true
45
+ int8_mask: true
46
+ dtype: float16
47
+ ```
48
+
49
+ ## 💻 Usage
50
+
51
+ ```python
52
+ !pip install -qU transformers accelerate
53
+
54
+ from transformers import AutoTokenizer
55
+ import transformers
56
+ import torch
57
+
58
+ model = "ilevytate/WizardAlpacaBlend-13B-TieCast"
59
+ messages = [{"role": "user", "content": "What is a large language model?"}]
60
+
61
+ tokenizer = AutoTokenizer.from_pretrained(model)
62
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
63
+ pipeline = transformers.pipeline(
64
+ "text-generation",
65
+ model=model,
66
+ torch_dtype=torch.float16,
67
+ device_map="auto",
68
+ )
69
+
70
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
71
+ print(outputs[0]["generated_text"])
72
+ ```