--- base_model: /gpfs/home/ikuzmin/hier-bert-pytorch/data/hier-model tags: - generated_from_trainer metrics: - accuracy model-index: - name: hier-bert-i3-mlm2 results: [] --- # hier-bert-i3-mlm2 This model is a fine-tuned version of [/gpfs/home/ikuzmin/hier-bert-pytorch/data/hier-model](https://huggingface.co//gpfs/home/ikuzmin/hier-bert-pytorch/data/hier-model) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2929 - Accuracy: 0.5612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.5 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.9488 | 1.55 | 25000 | 2.7667 | 0.4935 | | 2.4233 | 3.1 | 50000 | 2.2922 | 0.5612 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3