Upload folder using huggingface_hub
Browse files- .gitignore +1 -0
- config.json +50 -0
- configuration_ibs2.py +189 -0
- generation_config.json +7 -0
- modeling_ibs2.py +1457 -0
- pytorch_model-00001-of-00006.bin +3 -0
- pytorch_model-00002-of-00006.bin +3 -0
- pytorch_model-00003-of-00006.bin +3 -0
- pytorch_model-00004-of-00006.bin +3 -0
- pytorch_model-00005-of-00006.bin +3 -0
- pytorch_model-00006-of-00006.bin +3 -0
- pytorch_model.bin.index.json +589 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +0 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
fabric*
|
config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/mamba-codestral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"Mamba2ForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_ibs2.IBS2Config",
|
8 |
+
"AutoModel": "modeling_ibs2.IBS2ForCausalLM",
|
9 |
+
"AutoModelForCausalLM": "modeling_ibs2.IBS2ForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 0,
|
12 |
+
"chunk_size": 256,
|
13 |
+
"conv_kernel": 4,
|
14 |
+
"eos_token_id": 0,
|
15 |
+
"expand": 2,
|
16 |
+
"head_dim": 64,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 4096,
|
19 |
+
"ib_type": "gamma",
|
20 |
+
"initializer_range": 0.1,
|
21 |
+
"intermediate_size": 8192,
|
22 |
+
"layer_norm_epsilon": 1e-05,
|
23 |
+
"model_type": "ibs2",
|
24 |
+
"n_groups": 8,
|
25 |
+
"norm_before_gate": true,
|
26 |
+
"num_heads": 128,
|
27 |
+
"num_hidden_layers": 64,
|
28 |
+
"pad_token_id": 0,
|
29 |
+
"rescale_prenorm_residual": false,
|
30 |
+
"residual_in_fp32": true,
|
31 |
+
"rms_norm": true,
|
32 |
+
"state_size": 128,
|
33 |
+
"tie_word_embeddings": false,
|
34 |
+
"time_step_floor": 0.0001,
|
35 |
+
"time_step_init_scheme": "random",
|
36 |
+
"time_step_limit": [
|
37 |
+
0.0,
|
38 |
+
Infinity
|
39 |
+
],
|
40 |
+
"time_step_max": 0.1,
|
41 |
+
"time_step_min": 0.001,
|
42 |
+
"time_step_rank": 256,
|
43 |
+
"time_step_scale": 1.0,
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.43.3",
|
46 |
+
"use_bias": false,
|
47 |
+
"use_cache": true,
|
48 |
+
"use_conv_bias": true,
|
49 |
+
"vocab_size": 32768
|
50 |
+
}
|
configuration_ibs2.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""MAMBA2 configuration"""
|
16 |
+
|
17 |
+
import math
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class IBS2Config(PretrainedConfig):
|
27 |
+
"""
|
28 |
+
This is the configuration class to store the configuration of a [`Mamba2Model`]. It is used to instantiate a MAMBA2
|
29 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
30 |
+
defaults will yield a similar configuration to that of the MAMBA2
|
31 |
+
[state-spaces/mamba2-2.8b](https://huggingface.co/state-spaces/mamba2-2.8b) architecture.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
num_heads (`int`, *optional*, defaults to 128):
|
39 |
+
Number of heads for the evolution matrices of mamba 2.
|
40 |
+
head_dim (`int`, *optional*, defaults to 64):
|
41 |
+
Dimension of each head.
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32768):
|
43 |
+
Vocabulary size of the MAMBA2 model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`Mamba2Model`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimensionality of the embeddings and hidden states.
|
47 |
+
state_size (`int`, *optional*, defaults to 128): shape of the state space latents.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 64):
|
49 |
+
Number of hidden layers in the model.
|
50 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
51 |
+
The epsilon to use in the layer normalization layers.
|
52 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
53 |
+
Padding token id.
|
54 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
55 |
+
The id of the beginning of sentence token in the vocabulary.
|
56 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
57 |
+
The id of the end of sentence token in the vocabulary.
|
58 |
+
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
|
59 |
+
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
|
60 |
+
n_groups (`int`, *optional*, defaults to 8):
|
61 |
+
Number of groups for the evolution matrices of mamba 2.
|
62 |
+
use_bias (`bool`, *optional*, defaults to `False`):
|
63 |
+
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
|
64 |
+
use_conv_bias (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not to use bias in the convolution layer of the mixer block.
|
66 |
+
hidden_act (`str`, *optional*, defaults to `"silu"`):
|
67 |
+
The non-linear activation function (function or string) in the decoder.
|
68 |
+
initializer_range (`float`, *optional*, defaults to 0.1):
|
69 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
70 |
+
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
|
72 |
+
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
|
73 |
+
Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
|
74 |
+
time_step_min (`float`, *optional*, defaults to 0.001):
|
75 |
+
Minimum `time_step` used to bound `dt_proj.bias`.
|
76 |
+
time_step_max (`float`, *optional*, defaults to 0.1):
|
77 |
+
Maximum `time_step` used to bound `dt_proj.bias`.
|
78 |
+
time_step_floor (`float`, *optional*, defaults to 0.0001):
|
79 |
+
Minimum clamping value of the `dt_proj.bias` layer initialization.
|
80 |
+
time_step_limit (`tuple`, *optional*, defaults to `(0.0, inf)`):
|
81 |
+
Accepted range of time step values.
|
82 |
+
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
|
83 |
+
Whether or not to rescale `out_proj` weights when initializing.
|
84 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
85 |
+
Whether or not the cache should be used.
|
86 |
+
rms_norm (`bool`, *optional*, defaults to `True`):
|
87 |
+
Whether to use RMS norm or not.
|
88 |
+
chunk_size (`int`, *optional*, defaults to 256):
|
89 |
+
Size of the chunks that will comprise the sequence.
|
90 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
91 |
+
Whether to tie word embeddings or not.
|
92 |
+
|
93 |
+
|
94 |
+
Example:
|
95 |
+
|
96 |
+
```python
|
97 |
+
>>> from transformers import Mamba2Config, Mamba2Model
|
98 |
+
|
99 |
+
>>> # Initializing a Mamba2 configuration
|
100 |
+
>>> configuration = Mamba2Config()
|
101 |
+
|
102 |
+
>>> # Initializing a model (with random weights) from the configuration
|
103 |
+
>>> model = Mamba2Model(configuration)
|
104 |
+
|
105 |
+
>>> # Accessing the model configuration
|
106 |
+
>>> configuration = model.config
|
107 |
+
```"""
|
108 |
+
|
109 |
+
model_type = "ibs2"
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
num_classes=1,
|
114 |
+
ib_type=None,
|
115 |
+
return_attn=False,
|
116 |
+
num_heads=128,
|
117 |
+
head_dim=64,
|
118 |
+
vocab_size=32768,
|
119 |
+
hidden_size=4096,
|
120 |
+
state_size=128,
|
121 |
+
num_hidden_layers=64,
|
122 |
+
layer_norm_epsilon=1e-5,
|
123 |
+
pad_token_id=1,
|
124 |
+
bos_token_id=0,
|
125 |
+
eos_token_id=2,
|
126 |
+
expand=2,
|
127 |
+
conv_kernel=4,
|
128 |
+
n_groups=8,
|
129 |
+
use_bias=False,
|
130 |
+
use_conv_bias=True,
|
131 |
+
hidden_act="silu",
|
132 |
+
initializer_range=0.1,
|
133 |
+
residual_in_fp32=True,
|
134 |
+
time_step_rank="auto",
|
135 |
+
time_step_min=0.001,
|
136 |
+
time_step_max=0.1,
|
137 |
+
time_step_floor=1e-4,
|
138 |
+
time_step_limit=(0.0, float("inf")),
|
139 |
+
rescale_prenorm_residual=False,
|
140 |
+
use_cache=True,
|
141 |
+
rms_norm=True,
|
142 |
+
chunk_size=256,
|
143 |
+
tie_word_embeddings=False,
|
144 |
+
**kwargs,
|
145 |
+
):
|
146 |
+
self.num_classes = num_classes
|
147 |
+
self.ib_type = ib_type
|
148 |
+
self.return_attn = return_attn
|
149 |
+
self.vocab_size = vocab_size
|
150 |
+
self.hidden_size = hidden_size
|
151 |
+
self.state_size = state_size
|
152 |
+
self.num_hidden_layers = num_hidden_layers
|
153 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
154 |
+
self.conv_kernel = conv_kernel
|
155 |
+
self.expand = expand
|
156 |
+
|
157 |
+
self.bos_token_id = bos_token_id
|
158 |
+
self.eos_token_id = eos_token_id
|
159 |
+
self.pad_token_id = pad_token_id
|
160 |
+
self.use_bias = use_bias
|
161 |
+
self.use_conv_bias = use_conv_bias
|
162 |
+
self.hidden_act = hidden_act
|
163 |
+
self.initializer_range = initializer_range
|
164 |
+
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
|
165 |
+
self.time_step_min = time_step_min
|
166 |
+
self.time_step_max = time_step_max
|
167 |
+
self.time_step_floor = time_step_floor
|
168 |
+
self.rescale_prenorm_residual = rescale_prenorm_residual
|
169 |
+
self.residual_in_fp32 = residual_in_fp32
|
170 |
+
self.use_cache = use_cache
|
171 |
+
self.n_groups = n_groups
|
172 |
+
self.num_heads = num_heads
|
173 |
+
self.head_dim = head_dim
|
174 |
+
self.rms_norm = rms_norm
|
175 |
+
self.state_size = state_size
|
176 |
+
self.chunk_size = chunk_size
|
177 |
+
self.time_step_limit = time_step_limit
|
178 |
+
self.tie_word_embeddings = tie_word_embeddings
|
179 |
+
|
180 |
+
super().__init__(
|
181 |
+
bos_token_id=bos_token_id,
|
182 |
+
eos_token_id=eos_token_id,
|
183 |
+
pad_token_id=pad_token_id,
|
184 |
+
tie_word_embeddings=tie_word_embeddings,
|
185 |
+
**kwargs,
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
__all__ = ["IBS2Config"]
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 1,
|
6 |
+
"transformers_version": "4.43.3"
|
7 |
+
}
|
modeling_ibs2.py
ADDED
@@ -0,0 +1,1457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 state-spaces/mamba2 org and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch MAMBA2 model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import CrossEntropyLoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.generation import GenerationMixin
|
28 |
+
from transformers.modeling_utils import PreTrainedModel
|
29 |
+
from transformers.utils import (
|
30 |
+
ModelOutput,
|
31 |
+
add_code_sample_docstrings,
|
32 |
+
add_start_docstrings,
|
33 |
+
add_start_docstrings_to_model_forward,
|
34 |
+
logging,
|
35 |
+
)
|
36 |
+
from transformers.utils.import_utils import is_causal_conv1d_available, is_torch_available, _is_package_available, version
|
37 |
+
from .configuration_ibs2 import IBS2Config
|
38 |
+
|
39 |
+
def is_mamba_2_ssm_available():
|
40 |
+
if is_torch_available():
|
41 |
+
import torch
|
42 |
+
|
43 |
+
if not torch.cuda.is_available():
|
44 |
+
return False
|
45 |
+
else:
|
46 |
+
if _is_package_available("mamba_ssm"):
|
47 |
+
import mamba_ssm
|
48 |
+
|
49 |
+
if version.parse(mamba_ssm.__version__) >= version.parse("2.0.4"):
|
50 |
+
return True
|
51 |
+
return False
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
|
56 |
+
if is_mamba_2_ssm_available():
|
57 |
+
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
58 |
+
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
|
59 |
+
else:
|
60 |
+
mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, selective_state_update = None, None, None
|
61 |
+
|
62 |
+
if is_causal_conv1d_available():
|
63 |
+
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
64 |
+
else:
|
65 |
+
causal_conv1d_update, causal_conv1d_fn = None, None
|
66 |
+
|
67 |
+
is_fast_path_available = all(
|
68 |
+
(
|
69 |
+
selective_state_update,
|
70 |
+
mamba_chunk_scan_combined,
|
71 |
+
mamba_split_conv1d_scan_combined,
|
72 |
+
causal_conv1d_fn,
|
73 |
+
causal_conv1d_update,
|
74 |
+
)
|
75 |
+
)
|
76 |
+
|
77 |
+
_CHECKPOINT_FOR_DOC = "mistralai/mamba-codestral-7B-v0.1"
|
78 |
+
_CONFIG_FOR_DOC = "Mamba2Config"
|
79 |
+
|
80 |
+
|
81 |
+
# Helper methods for segment sum computation
|
82 |
+
|
83 |
+
|
84 |
+
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
|
85 |
+
"""
|
86 |
+
Padding x tensor with `pad_size` on the seq_len dim (dim=1)
|
87 |
+
|
88 |
+
Assumes that we only have tensors of either size 4 or 3
|
89 |
+
"""
|
90 |
+
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
|
91 |
+
|
92 |
+
return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)
|
93 |
+
|
94 |
+
|
95 |
+
def reshape_into_chunks(input_tensor, pad_size, chunk_size):
|
96 |
+
"""
|
97 |
+
Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
|
98 |
+
simultaneously splitting it into chunk sequences.
|
99 |
+
|
100 |
+
Assumes that we only have tensors of either size 4 or 3
|
101 |
+
"""
|
102 |
+
# [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
|
103 |
+
input_tensor = pad_tensor_by_size(input_tensor, pad_size)
|
104 |
+
|
105 |
+
if len(input_tensor.shape) == 3:
|
106 |
+
# [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
|
107 |
+
return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
|
108 |
+
else:
|
109 |
+
# [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
|
110 |
+
return input_tensor.reshape(
|
111 |
+
input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
def segment_sum(input_tensor):
|
116 |
+
"""
|
117 |
+
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
|
118 |
+
"""
|
119 |
+
chunk_size = input_tensor.size(-1)
|
120 |
+
# 1. expand input tensor to have an additional dimension and repeat along that dimension
|
121 |
+
# [..., chunk_size] -> [..., chunk_size, chunk_size]
|
122 |
+
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
|
123 |
+
# 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
|
124 |
+
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
|
125 |
+
input_tensor = input_tensor.masked_fill(~mask, 0)
|
126 |
+
# 3. compute actual cumsum
|
127 |
+
tensor_segsum = torch.cumsum(input_tensor, dim=-2)
|
128 |
+
|
129 |
+
# 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
|
130 |
+
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
|
131 |
+
tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
|
132 |
+
return tensor_segsum
|
133 |
+
|
134 |
+
|
135 |
+
def apply_mask_to_padding_states(hidden_states, attention_mask):
|
136 |
+
"""
|
137 |
+
Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66
|
138 |
+
"""
|
139 |
+
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
140 |
+
dtype = hidden_states.dtype
|
141 |
+
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
142 |
+
|
143 |
+
return hidden_states
|
144 |
+
|
145 |
+
|
146 |
+
class Mamba2Cache:
|
147 |
+
"""
|
148 |
+
Arguments:
|
149 |
+
config: Mamba2Config
|
150 |
+
batch_size: int
|
151 |
+
dtype: torch.dtype
|
152 |
+
device: torch.device
|
153 |
+
|
154 |
+
Attributes:
|
155 |
+
dtype: (`torch.dtype`):
|
156 |
+
The default `dtype` used to initializing the cache.
|
157 |
+
conv_kernel_size: (`int`):
|
158 |
+
Model's convolution kernel size taken from config.
|
159 |
+
n_groups: (`int`):
|
160 |
+
Model's number of groups taken from the config - similar to tensor parallel in Transformer.
|
161 |
+
state_size: (`int`):
|
162 |
+
Model's SSM state size taken from config.
|
163 |
+
num_heads: (`int`):
|
164 |
+
The number of heads used in the linear attention / SSM.
|
165 |
+
head_dim: (`int`):
|
166 |
+
The respective dimension of the heads used in the linear attention / SSM.
|
167 |
+
intermediate_size: (`int`):
|
168 |
+
Model's intermediate_size based on (expand * hidden_dim) from config.
|
169 |
+
conv_states: (`torch.Tensor`):
|
170 |
+
A tensor of shape `[num_layers, batch_size, conv_kernel_size, intermediate_size + 2 * n_groups * state_size]` that holds convolutional states.
|
171 |
+
ssm_states: (`torch.Tensor`):
|
172 |
+
A tensor of shape `[num_layers, batch_size, num_heads, head_dim, state_size]` that holds ssm states.
|
173 |
+
"""
|
174 |
+
|
175 |
+
def __init__(
|
176 |
+
self, config: IBS2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
|
177 |
+
):
|
178 |
+
self.dtype = dtype
|
179 |
+
self.conv_kernel_size = config.conv_kernel
|
180 |
+
self.n_groups = config.n_groups
|
181 |
+
self.state_size = config.state_size
|
182 |
+
self.num_heads = config.num_heads
|
183 |
+
self.head_dim = config.head_dim
|
184 |
+
self.intermediate_size = int(config.expand * config.hidden_size)
|
185 |
+
|
186 |
+
self.conv_states = torch.zeros(
|
187 |
+
config.num_hidden_layers,
|
188 |
+
batch_size,
|
189 |
+
self.intermediate_size + 2 * self.n_groups * self.state_size,
|
190 |
+
self.conv_kernel_size,
|
191 |
+
device=device,
|
192 |
+
dtype=dtype,
|
193 |
+
)
|
194 |
+
self.ssm_states = torch.zeros(
|
195 |
+
config.num_hidden_layers,
|
196 |
+
batch_size,
|
197 |
+
self.num_heads,
|
198 |
+
self.head_dim,
|
199 |
+
self.state_size,
|
200 |
+
device=device,
|
201 |
+
dtype=dtype,
|
202 |
+
)
|
203 |
+
|
204 |
+
def update_conv_state(
|
205 |
+
self, layer_idx: int, new_conv_state: torch.Tensor, cache_init: bool = False
|
206 |
+
) -> torch.Tensor:
|
207 |
+
if cache_init:
|
208 |
+
self.conv_states[layer_idx] = new_conv_state.to(self.conv_states.device)
|
209 |
+
else:
|
210 |
+
self.conv_states[layer_idx] = self.conv_states[layer_idx].roll(shifts=-1, dims=-1)
|
211 |
+
self.conv_states[layer_idx][:, :, -1] = new_conv_state[:, 0, :].to(self.conv_states.device)
|
212 |
+
return self.conv_states[layer_idx]
|
213 |
+
|
214 |
+
def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor):
|
215 |
+
self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device)
|
216 |
+
return self.ssm_states[layer_idx]
|
217 |
+
|
218 |
+
def reset(self):
|
219 |
+
self.conv_states.zero_()
|
220 |
+
self.ssm_states.zero_()
|
221 |
+
|
222 |
+
|
223 |
+
class MambaRMSNormGated(torch.nn.Module):
|
224 |
+
def __init__(self, hidden_size, eps=1e-6):
|
225 |
+
super().__init__()
|
226 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
227 |
+
self.variance_epsilon = eps
|
228 |
+
|
229 |
+
def forward(self, hidden_states, gate=None):
|
230 |
+
input_dtype = hidden_states.dtype
|
231 |
+
hidden_states = hidden_states.to(torch.float32)
|
232 |
+
|
233 |
+
if gate is not None:
|
234 |
+
hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32))
|
235 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
236 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
237 |
+
|
238 |
+
return self.weight * hidden_states.to(input_dtype)
|
239 |
+
|
240 |
+
class Normalize(nn.Module):
|
241 |
+
def __init__(self, min_value=None, max_value=None):
|
242 |
+
super().__init__()
|
243 |
+
self.min_value = min_value
|
244 |
+
self.max_value = max_value
|
245 |
+
|
246 |
+
def forward(self, value_states):
|
247 |
+
# 计算 value_states 的最小值和最大值
|
248 |
+
min_val = value_states.min(dim=-1, keepdim=True).values
|
249 |
+
max_val = value_states.max(dim=-1, keepdim=True).values
|
250 |
+
|
251 |
+
# 如果 min_value 或 max_value 是 None,则使用另一个值进行归一化
|
252 |
+
if self.min_value is None and self.max_value is not None:
|
253 |
+
# 只使用 max_value 进行归一化
|
254 |
+
scale_factor = self.max_value / (max_val + 1e-6)
|
255 |
+
return value_states * scale_factor, scale_factor, None
|
256 |
+
elif self.max_value is None and self.min_value is not None:
|
257 |
+
# 只使用 min_value 进行归一化
|
258 |
+
scale_factor = self.min_value / (min_val + 1e-6)
|
259 |
+
return value_states * scale_factor, scale_factor, None
|
260 |
+
elif self.min_value is not None and self.max_value is not None:
|
261 |
+
# 同时使用 min_value 和 max_value 进行归一化
|
262 |
+
scale_factor = (self.max_value - self.min_value) / (max_val - min_val + 1e-6)
|
263 |
+
shift_factor = self.min_value - min_val * scale_factor
|
264 |
+
normalized_value_states = value_states * scale_factor + shift_factor
|
265 |
+
return normalized_value_states, scale_factor, shift_factor
|
266 |
+
else:
|
267 |
+
# 如果 min_value 和 max_value 都是 None,则不进行归一化
|
268 |
+
return value_states, None, None
|
269 |
+
|
270 |
+
|
271 |
+
# torch.lgamma(n) - torch.lgamma(theta) + (theta - n) * torch.special.digamma(theta)
|
272 |
+
class GammaIB(nn.Module):
|
273 |
+
def __init__(self, hidden_size, alphas=None, return_attn=False, **kwargs) -> None:
|
274 |
+
super().__init__()
|
275 |
+
self.alphas = alphas
|
276 |
+
# self.attributor = nn.Linear(hidden_size, 1)
|
277 |
+
self.hidden_size = hidden_size
|
278 |
+
self._auxiliary_loss = 0
|
279 |
+
self.epoch_frac = 0
|
280 |
+
self.epoch_threshold = -1
|
281 |
+
self.normalizer = Normalize(max_value=10, min_value=0.1)
|
282 |
+
self.return_attn = return_attn
|
283 |
+
self._attn = None
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
+
def get_auxiliary_loss(self):
|
288 |
+
loss = self._auxiliary_loss
|
289 |
+
self._auxiliary_loss = 0.0
|
290 |
+
# print("auxiliary_loss", loss)
|
291 |
+
return loss
|
292 |
+
|
293 |
+
def init_alphas(self, param_alphas):
|
294 |
+
# shape: [bsz, seq_len, 1]
|
295 |
+
if self.alphas is None:
|
296 |
+
maxmimum = 8
|
297 |
+
else:
|
298 |
+
maxmimum = param_alphas.size(1) / self.alphas.size(0) * self.alphas.max().item()
|
299 |
+
length = param_alphas.shape[1]
|
300 |
+
alphas = torch.linspace(maxmimum, 1, steps=length).float().to(param_alphas.device) # distance-decay: torch.linspace(1, 2, steps=length)
|
301 |
+
self.alphas = alphas
|
302 |
+
|
303 |
+
def compute_loss(self, param_alphas, epsilon=1e-6):
|
304 |
+
if self.alphas is None:
|
305 |
+
self.init_alphas(param_alphas) # length is the second dimension of att
|
306 |
+
print(f"Gamma prior alpha first: {self.alphas[0]}, last: {self.alphas[-1]}, size: {self.alphas.size(0)}", )
|
307 |
+
if self.alphas.size(0) != param_alphas.size(1):
|
308 |
+
self.init_alphas(param_alphas) # length is the second dimension of att
|
309 |
+
print(f"Gamma prior alpha first: {self.alphas[0]}, last: {self.alphas[-1]}, size: {self.alphas.size(0)}", )
|
310 |
+
|
311 |
+
params = self.alphas.unsqueeze(-1).expand(param_alphas.shape)
|
312 |
+
reg_loss = (torch.lgamma(self.alphas) - torch.lgamma(params) + (params - self.alphas) * torch.digamma(params)).mean()
|
313 |
+
|
314 |
+
return reg_loss
|
315 |
+
|
316 |
+
def forward(self, states):
|
317 |
+
# hidden_states shape [bsz, seq_length, dimension]
|
318 |
+
hidden_states, alphas = torch.split(
|
319 |
+
states,
|
320 |
+
[self.hidden_size, 1],
|
321 |
+
dim=-1
|
322 |
+
)
|
323 |
+
if self.epoch_frac < self.epoch_threshold:
|
324 |
+
return hidden_states
|
325 |
+
# alphas = F.rms_norm(alphas, [hidden_states.shape[1], 1])
|
326 |
+
#! HACK: for finetuning we zero-init and reparametrize to ensure the initialization is one
|
327 |
+
alphas = nn.functional.softplus(alphas) - torch.log(torch.tensor(2.0)) + torch.tensor(1.0)
|
328 |
+
# if self.return_attn:
|
329 |
+
# # print(alphas.shape)
|
330 |
+
# if alphas.shape[-2] == 1:
|
331 |
+
# pass # seqlen == 1 indicates it is caching
|
332 |
+
# else:
|
333 |
+
# self._attn = alphas.detach().cpu()
|
334 |
+
|
335 |
+
shaped_alphas = alphas.expand(-1, -1, hidden_states.shape[2])
|
336 |
+
if self.training:
|
337 |
+
self._auxiliary_loss = self.compute_loss(alphas)
|
338 |
+
value_states = hidden_states.abs() # ensure value_states is positive
|
339 |
+
normalized_value_states, scale_factor, shift_factor = self.normalizer(value_states)
|
340 |
+
|
341 |
+
betas = torch.reciprocal(normalized_value_states)
|
342 |
+
sign_states = torch.sign(hidden_states)
|
343 |
+
gamma_dist = torch.distributions.gamma.Gamma(shaped_alphas, betas)
|
344 |
+
samples = gamma_dist.rsample()
|
345 |
+
# Restore the original scale
|
346 |
+
if shift_factor is not None:
|
347 |
+
time_states = samples * sign_states / scale_factor - shift_factor / scale_factor
|
348 |
+
else:
|
349 |
+
time_states = samples * sign_states / scale_factor
|
350 |
+
else:
|
351 |
+
time_states = shaped_alphas * hidden_states # directly use the expectation
|
352 |
+
|
353 |
+
if self.return_attn:
|
354 |
+
# print(alphas.shape)
|
355 |
+
if time_states.shape[-2] == 1:
|
356 |
+
pass # seqlen == 1 indicates it is caching
|
357 |
+
else:
|
358 |
+
self._attn = torch.exp(-time_states).mean(dim=-1).detach().cpu()
|
359 |
+
|
360 |
+
return time_states
|
361 |
+
|
362 |
+
class BernoulliIB(nn.Module):
|
363 |
+
def __init__(self, hidden_size, temp=1, thetas=None, max_seqlen=1024, return_attn=False, **kwargs) -> None:
|
364 |
+
super().__init__()
|
365 |
+
self.epoch_frac = 0
|
366 |
+
self.epoch_threshold = 0
|
367 |
+
self.temp = temp
|
368 |
+
self.thetas = thetas
|
369 |
+
self.hidden_size = hidden_size
|
370 |
+
# self.attributor = nn.Linear(hidden_size, 1, bias=True)
|
371 |
+
self._auxiliary_loss = 0
|
372 |
+
self.max_seqlen = 4096
|
373 |
+
self.return_attn = return_attn
|
374 |
+
self._attn = None
|
375 |
+
|
376 |
+
def init_thetas(self, attn):
|
377 |
+
# Create a tensor with sequence positions [0, 1, ..., length-1]
|
378 |
+
# length = attn.shape[1]
|
379 |
+
seq_len = attn.shape[1]
|
380 |
+
if seq_len <= self.max_seqlen:
|
381 |
+
positions = torch.arange(self.max_seqlen).float().to(attn.device)
|
382 |
+
else:
|
383 |
+
positions = torch.arange(self.max_seqlen - seq_len, self.max_seqlen).float().to(attn.device)
|
384 |
+
|
385 |
+
# Define the exponential decay function
|
386 |
+
# decay_factor = 0.3 + 0.4 * torch.exp(positions / length - 1) # extrapolable distance-decay (-\infty: 0.3, 0: 0.5, length: 0.7)
|
387 |
+
decay_factor = 0.8 - 0.6 * torch.exp(positions / self.max_seqlen - 1) # extrapolable distance-balance (-\infty: 0.7, 0: 0.5, length: 0.3)
|
388 |
+
|
389 |
+
# Make the decay factor repeat across the batch dimension
|
390 |
+
self.thetas = decay_factor
|
391 |
+
return decay_factor
|
392 |
+
|
393 |
+
# def get_token_saliency(self):
|
394 |
+
# attn = self._attn
|
395 |
+
# self._attn = None
|
396 |
+
# return attn
|
397 |
+
|
398 |
+
def get_auxiliary_loss(self):
|
399 |
+
loss = self._auxiliary_loss
|
400 |
+
self._auxiliary_loss = 0.0
|
401 |
+
return loss
|
402 |
+
|
403 |
+
def compute_loss(self, att, epsilon=1e-6):
|
404 |
+
if self.thetas is None:
|
405 |
+
thetas = self.init_thetas(att) # length is the second dimension of att
|
406 |
+
print(f"Bernoulli prior theta first: {self.thetas[0]:.2f}, last: {self.thetas[-1]:.2f}, size: {self.thetas.size(0)}")
|
407 |
+
|
408 |
+
if self.thetas.size(0) >= att.size(1):
|
409 |
+
thetas = self.thetas[-att.size(1):]
|
410 |
+
elif self.thetas.size(0) < att.size(1):
|
411 |
+
thetas = self.init_thetas(att)
|
412 |
+
print(f"Bernoulli prior theta first: {self.thetas[0]:.2f}, last: {self.thetas[-1]:.2f}, size: {self.thetas.size(0)}")
|
413 |
+
|
414 |
+
thetas = thetas.unsqueeze(-1).expand(att.shape)
|
415 |
+
# Calculate the regularization loss
|
416 |
+
reg_loss = (att * torch.log(att / thetas + epsilon) +
|
417 |
+
(1 - att) * torch.log((1 - att) / (1 - thetas + epsilon) + epsilon)).mean()
|
418 |
+
|
419 |
+
return reg_loss
|
420 |
+
|
421 |
+
def forward(self, states):
|
422 |
+
# hidden_states shape [bsz, seq_length, dimension]
|
423 |
+
hidden_states, attn = torch.split(
|
424 |
+
states,
|
425 |
+
[self.hidden_size, 1],
|
426 |
+
dim=-1
|
427 |
+
)
|
428 |
+
# attn = self.attributor(hidden_states)
|
429 |
+
#! HACK: for fintuning, we zero-init and re-paramerize as plus 1
|
430 |
+
attn = attn + torch.tensor(1.0)
|
431 |
+
if self.epoch_frac < self.epoch_threshold:
|
432 |
+
return hidden_states
|
433 |
+
if self.training:
|
434 |
+
# gumble soft-max
|
435 |
+
random_noise = torch.empty_like(attn).uniform_(1e-10, 1 - 1e-10)
|
436 |
+
random_noise = torch.log(random_noise) - torch.log(1.0 - random_noise)
|
437 |
+
attn_bern = ((attn + random_noise) / self.temp).sigmoid()
|
438 |
+
else:
|
439 |
+
attn_bern = (attn).sigmoid()
|
440 |
+
self._auxiliary_loss = self.compute_loss(attn_bern)
|
441 |
+
if self.return_attn:
|
442 |
+
if attn_bern.shape[-2] == 1:
|
443 |
+
pass # seqlen == 1 indicates it is caching
|
444 |
+
else:
|
445 |
+
self._attn = attn_bern.detach().cpu()
|
446 |
+
return hidden_states * attn_bern
|
447 |
+
|
448 |
+
|
449 |
+
class Mamba2Mixer(nn.Module):
|
450 |
+
"""
|
451 |
+
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
|
452 |
+
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
453 |
+
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
|
454 |
+
and is why Mamba is called **selective** state spaces)
|
455 |
+
"""
|
456 |
+
|
457 |
+
def __init__(self, config: IBS2Config, layer_idx: int):
|
458 |
+
super().__init__()
|
459 |
+
self.num_heads = config.num_heads
|
460 |
+
self.hidden_size = config.hidden_size
|
461 |
+
self.ssm_state_size = config.state_size
|
462 |
+
self.conv_kernel_size = config.conv_kernel
|
463 |
+
self.intermediate_size = int(config.expand * self.hidden_size)
|
464 |
+
self.time_step_rank = int(config.time_step_rank)
|
465 |
+
self.layer_idx = layer_idx
|
466 |
+
self.use_conv_bias = config.use_conv_bias
|
467 |
+
self.activation = config.hidden_act
|
468 |
+
self.act = ACT2FN[config.hidden_act]
|
469 |
+
|
470 |
+
self.layer_norm_epsilon = config.layer_norm_epsilon
|
471 |
+
self.rms_norm = config.rms_norm
|
472 |
+
|
473 |
+
self.n_groups = config.n_groups
|
474 |
+
self.head_dim = config.head_dim
|
475 |
+
self.chunk_size = config.chunk_size
|
476 |
+
|
477 |
+
self.time_step_limit = config.time_step_limit
|
478 |
+
self.time_step_min = config.time_step_min
|
479 |
+
self.time_step_max = config.time_step_max
|
480 |
+
|
481 |
+
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
|
482 |
+
self.conv1d = nn.Conv1d(
|
483 |
+
in_channels=self.conv_dim,
|
484 |
+
out_channels=self.conv_dim,
|
485 |
+
bias=config.use_conv_bias,
|
486 |
+
kernel_size=config.conv_kernel,
|
487 |
+
groups=self.conv_dim,
|
488 |
+
padding=config.conv_kernel - 1,
|
489 |
+
)
|
490 |
+
|
491 |
+
# projection of the input hidden states
|
492 |
+
#! HACK ib_dim
|
493 |
+
self._attn = None
|
494 |
+
self.return_attn = config.return_attn
|
495 |
+
assert config.ib_type in ['bernoulli', 'gamma'], "Invalid IB Prior."
|
496 |
+
IB_cls = BernoulliIB if config.ib_type == 'bernoulli' else GammaIB if config.ib_type == 'gamma' else None
|
497 |
+
self.ib4dt = IB_cls(self.num_heads, return_attn=config.return_attn) if self.layer_idx in [0, 31, 63] else None
|
498 |
+
|
499 |
+
self.ib_proj = nn.Linear(
|
500 |
+
self.hidden_size,
|
501 |
+
1,
|
502 |
+
bias=False,
|
503 |
+
) if self.ib4dt else None
|
504 |
+
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
|
505 |
+
self.in_proj = nn.Linear(
|
506 |
+
self.hidden_size,
|
507 |
+
projection_size,
|
508 |
+
bias=config.use_bias,
|
509 |
+
)
|
510 |
+
# selective projection used to make dt, B and C input dependant
|
511 |
+
|
512 |
+
# time step projection (discretization)
|
513 |
+
# instantiate once and copy inv_dt in init_weights of PretrainedModel
|
514 |
+
self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
|
515 |
+
|
516 |
+
# S4D real initialization. These are not discretized!
|
517 |
+
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
518 |
+
A = torch.arange(1, self.num_heads + 1)
|
519 |
+
self.A_log = nn.Parameter(torch.log(A))
|
520 |
+
self.A_log._no_weight_decay = True
|
521 |
+
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
|
522 |
+
self.D = nn.Parameter(torch.ones(self.num_heads))
|
523 |
+
self.D._no_weight_decay = True
|
524 |
+
|
525 |
+
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
526 |
+
self.use_bias = config.use_bias
|
527 |
+
|
528 |
+
if not is_fast_path_available:
|
529 |
+
logger.warning_once(
|
530 |
+
"The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
|
531 |
+
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
|
532 |
+
" https://github.com/Dao-AILab/causal-conv1d"
|
533 |
+
)
|
534 |
+
|
535 |
+
def get_token_saliency(self):
|
536 |
+
attn = self._attn
|
537 |
+
self._attn = None
|
538 |
+
return attn
|
539 |
+
|
540 |
+
def cuda_kernels_forward(
|
541 |
+
self,
|
542 |
+
hidden_states: torch.Tensor,
|
543 |
+
cache_params: Optional[Mamba2Cache] = None,
|
544 |
+
cache_position: Optional[torch.LongTensor] = None,
|
545 |
+
attention_mask: Optional[torch.Tensor] = None,
|
546 |
+
):
|
547 |
+
# 1. Gated MLP's linear projection
|
548 |
+
hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask)
|
549 |
+
projected_states = self.in_proj(hidden_states)
|
550 |
+
|
551 |
+
#! HACK IBS apply
|
552 |
+
if self.ib4dt:
|
553 |
+
ib_state = self.ib_proj(hidden_states)
|
554 |
+
dim = self.head_dim * self.num_heads
|
555 |
+
zx, BC, dt = torch.split(projected_states, [dim * 2, + self.n_groups * self.ssm_state_size * 2, self.num_heads], dim=-1)
|
556 |
+
dt = self.ib4dt(torch.cat([dt, ib_state], dim=-1))
|
557 |
+
projected_states = torch.cat([zx, BC, dt], dim=-1)
|
558 |
+
if self.return_attn and dt.shape[-2] != 1:
|
559 |
+
dt_plus = nn.functional.softplus(dt + self.dt_bias)
|
560 |
+
dA = (dt_plus * (-torch.exp(self.A_log.float())))
|
561 |
+
# dA = torch.exp(dA)
|
562 |
+
attn = dA.mean(dim=-1) # - 0.1 * dA.std(dim=-1) # attn shape [batch_size, seqlen]
|
563 |
+
self._attn = attn
|
564 |
+
|
565 |
+
# Set up dimensions for reshapes later
|
566 |
+
batch_size, seq_len, _ = hidden_states.shape
|
567 |
+
groups_time_state_size = self.n_groups * self.ssm_state_size
|
568 |
+
d_mlp = (
|
569 |
+
projected_states.shape[-1]
|
570 |
+
- 2 * self.intermediate_size
|
571 |
+
- 2 * self.n_groups * self.ssm_state_size
|
572 |
+
- self.num_heads
|
573 |
+
) // 2
|
574 |
+
|
575 |
+
# Single step calculations via cache
|
576 |
+
if cache_params is not None and cache_position is not None and cache_position[0] > 0:
|
577 |
+
_, _, gate, hidden_states_B_C, dt = projected_states.squeeze(1).split(
|
578 |
+
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
|
579 |
+
)
|
580 |
+
|
581 |
+
# 2. Convolution sequence transformation
|
582 |
+
hidden_states_B_C = causal_conv1d_update(
|
583 |
+
hidden_states_B_C,
|
584 |
+
cache_params.conv_states[self.layer_idx],
|
585 |
+
self.conv1d.weight.squeeze(1),
|
586 |
+
self.conv1d.bias,
|
587 |
+
self.activation,
|
588 |
+
)
|
589 |
+
|
590 |
+
hidden_states, B, C = torch.split(
|
591 |
+
hidden_states_B_C,
|
592 |
+
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
|
593 |
+
dim=-1,
|
594 |
+
)
|
595 |
+
|
596 |
+
# 3. SSM transformation
|
597 |
+
A = -torch.exp(self.A_log.float()) # (nheads,)
|
598 |
+
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
|
599 |
+
dt = dt[:, :, None].expand(-1, -1, self.head_dim)
|
600 |
+
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
|
601 |
+
D = self.D[:, None, ...].expand(-1, self.head_dim)
|
602 |
+
B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
|
603 |
+
C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
|
604 |
+
hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
|
605 |
+
hidden_states = selective_state_update(
|
606 |
+
cache_params.ssm_states[self.layer_idx],
|
607 |
+
hidden_states_reshaped,
|
608 |
+
dt,
|
609 |
+
A,
|
610 |
+
B,
|
611 |
+
C,
|
612 |
+
D,
|
613 |
+
z=None,
|
614 |
+
dt_bias=dt_bias,
|
615 |
+
dt_softplus=True,
|
616 |
+
)
|
617 |
+
hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
|
618 |
+
hidden_states = self.norm(hidden_states, gate)
|
619 |
+
|
620 |
+
# 4. Final linear projection
|
621 |
+
out = self.out_proj(hidden_states)[:, None, ...]
|
622 |
+
|
623 |
+
# Fused calculations or step by step if no initialized cache is found
|
624 |
+
else:
|
625 |
+
A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size)
|
626 |
+
dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}
|
627 |
+
|
628 |
+
# 2-4. Fused kernel for conv1d, SSM, and the final projection
|
629 |
+
if self.training and cache_params is None:
|
630 |
+
out = mamba_split_conv1d_scan_combined(
|
631 |
+
projected_states,
|
632 |
+
self.conv1d.weight.squeeze(1),
|
633 |
+
self.conv1d.bias,
|
634 |
+
self.dt_bias,
|
635 |
+
A,
|
636 |
+
D=self.D,
|
637 |
+
chunk_size=self.chunk_size,
|
638 |
+
seq_idx=None, # was seq_idx
|
639 |
+
activation=self.activation,
|
640 |
+
rmsnorm_weight=self.norm.weight,
|
641 |
+
rmsnorm_eps=self.norm.variance_epsilon,
|
642 |
+
outproj_weight=self.out_proj.weight,
|
643 |
+
outproj_bias=self.out_proj.bias,
|
644 |
+
headdim=self.head_dim,
|
645 |
+
ngroups=self.n_groups,
|
646 |
+
norm_before_gate=False,
|
647 |
+
return_final_states=False,
|
648 |
+
**dt_limit_kwargs,
|
649 |
+
)
|
650 |
+
|
651 |
+
else:
|
652 |
+
_, _, gate, hidden_states_B_C, dt = projected_states.split(
|
653 |
+
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
|
654 |
+
)
|
655 |
+
|
656 |
+
# 2. Convolution sequence transformation
|
657 |
+
# Init cache
|
658 |
+
if cache_params is not None:
|
659 |
+
hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
|
660 |
+
conv_states = nn.functional.pad(
|
661 |
+
hidden_states_B_C_transposed,
|
662 |
+
(cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0),
|
663 |
+
)
|
664 |
+
cache_params.update_conv_state(
|
665 |
+
layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True
|
666 |
+
)
|
667 |
+
|
668 |
+
if self.activation not in ["silu", "swish"]:
|
669 |
+
hidden_states_B_C = self.act(
|
670 |
+
self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)
|
671 |
+
)
|
672 |
+
else:
|
673 |
+
hidden_states_B_C = causal_conv1d_fn(
|
674 |
+
x=hidden_states_B_C.transpose(1, 2),
|
675 |
+
weight=self.conv1d.weight.squeeze(1),
|
676 |
+
bias=self.conv1d.bias,
|
677 |
+
activation=self.activation,
|
678 |
+
).transpose(1, 2)
|
679 |
+
|
680 |
+
hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
|
681 |
+
hidden_states, B, C = torch.split(
|
682 |
+
hidden_states_B_C,
|
683 |
+
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
|
684 |
+
dim=-1,
|
685 |
+
)
|
686 |
+
|
687 |
+
# 3. SSM transformation
|
688 |
+
scan_output, ssm_state = mamba_chunk_scan_combined(
|
689 |
+
hidden_states.view(batch_size, seq_len, -1, self.head_dim),
|
690 |
+
dt,
|
691 |
+
A,
|
692 |
+
B.view(batch_size, seq_len, self.n_groups, -1),
|
693 |
+
C.view(batch_size, seq_len, self.n_groups, -1),
|
694 |
+
chunk_size=self.chunk_size,
|
695 |
+
D=self.D,
|
696 |
+
z=None,
|
697 |
+
seq_idx=None,
|
698 |
+
return_final_states=True,
|
699 |
+
dt_bias=self.dt_bias,
|
700 |
+
dt_softplus=True,
|
701 |
+
**dt_limit_kwargs,
|
702 |
+
)
|
703 |
+
|
704 |
+
# Init cache
|
705 |
+
if ssm_state is not None and cache_params is not None:
|
706 |
+
cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state)
|
707 |
+
|
708 |
+
scan_output = scan_output.view(batch_size, seq_len, -1)
|
709 |
+
# Multiply "gate" branch and apply extra normalization layer
|
710 |
+
scan_output = self.norm(scan_output, gate)
|
711 |
+
|
712 |
+
# 4. Final linear projection
|
713 |
+
out = self.out_proj(scan_output)
|
714 |
+
return out
|
715 |
+
|
716 |
+
# fmt: off
|
717 |
+
def torch_forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
|
718 |
+
batch_size, seq_len, _ = input_states.shape
|
719 |
+
dtype = input_states.dtype
|
720 |
+
|
721 |
+
# 1. Gated MLP's linear projection
|
722 |
+
input_states = apply_mask_to_padding_states(input_states, attention_mask)
|
723 |
+
projected_states = self.in_proj(input_states)
|
724 |
+
|
725 |
+
if self.ib4dt:
|
726 |
+
attn = self.ib_proj(input_states)
|
727 |
+
dim = self.head_dim * self.num_heads
|
728 |
+
zx, BC, dt = torch.split(projected_states, [dim * 2, + self.n_groups * self.ssm_state_size * 2, self.num_heads], dim=-1)
|
729 |
+
dt = self.ib4dt(torch.cat([dt, attn], dim=-1))
|
730 |
+
projected_states = torch.cat([zx, BC, dt], dim=-1)
|
731 |
+
|
732 |
+
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size-self.num_heads) // 2
|
733 |
+
_, _, gate, hidden_states_B_C, dt = projected_states.split(
|
734 |
+
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
|
735 |
+
)
|
736 |
+
|
737 |
+
# 2. Convolution sequence transformation
|
738 |
+
if cache_params is not None and cache_position is not None and cache_position[0] > 0:
|
739 |
+
cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=hidden_states_B_C, cache_init=False)
|
740 |
+
|
741 |
+
# We need to guarantee that anything regarding the cache is on the same device
|
742 |
+
conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device)
|
743 |
+
|
744 |
+
hidden_states_B_C = torch.sum(
|
745 |
+
conv_states * self.conv1d.weight.squeeze(1), dim=-1
|
746 |
+
)
|
747 |
+
if self.use_conv_bias:
|
748 |
+
hidden_states_B_C = hidden_states_B_C + self.conv1d.bias
|
749 |
+
hidden_states_B_C = self.act(hidden_states_B_C)
|
750 |
+
else:
|
751 |
+
# Init cache
|
752 |
+
if cache_params is not None:
|
753 |
+
hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
|
754 |
+
conv_states = nn.functional.pad(
|
755 |
+
hidden_states_B_C_transposed, (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0)
|
756 |
+
)
|
757 |
+
cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True)
|
758 |
+
|
759 |
+
hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2))
|
760 |
+
|
761 |
+
hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
|
762 |
+
hidden_states, B, C = torch.split(
|
763 |
+
hidden_states_B_C,
|
764 |
+
[self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size],
|
765 |
+
dim=-1
|
766 |
+
)
|
767 |
+
|
768 |
+
# 3. SSM transformation
|
769 |
+
A = -torch.exp(self.A_log.float()) # [num_heads]
|
770 |
+
if cache_params is not None and cache_position is not None and cache_position[0] > 0:
|
771 |
+
# We need to guarantee that anything regarding the cache is on the same device
|
772 |
+
cache_device = cache_params.ssm_states.device
|
773 |
+
|
774 |
+
# Note: there is no need to pad parameter matrices here, as there is just one new token
|
775 |
+
# for batched generation
|
776 |
+
dt = dt[:, 0, :][:, None, ...]
|
777 |
+
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
|
778 |
+
# [num_heads] -> [num_heads, head_dim]
|
779 |
+
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
|
780 |
+
|
781 |
+
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
|
782 |
+
dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
|
783 |
+
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
|
784 |
+
# [bsz, num_heads, head_dim, state_size]
|
785 |
+
dA = (torch.exp(dt[..., None] * A)).to(device=cache_device)
|
786 |
+
|
787 |
+
# Discretize B
|
788 |
+
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
|
789 |
+
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
|
790 |
+
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
791 |
+
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
|
792 |
+
B = B.reshape(batch_size, -1, B.shape[-1])
|
793 |
+
# [bsz, num_heads, head_dim, state_size]
|
794 |
+
dB = dt[..., None] * B[..., None, :]
|
795 |
+
|
796 |
+
# Discretize x into dB
|
797 |
+
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
|
798 |
+
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
|
799 |
+
dBx = (dB * hidden_states[..., None]).to(device=cache_device)
|
800 |
+
|
801 |
+
# State calculation
|
802 |
+
cache_params.update_ssm_state(
|
803 |
+
layer_idx=self.layer_idx,
|
804 |
+
new_ssm_state=cache_params.ssm_states[self.layer_idx] * dA + dBx
|
805 |
+
)
|
806 |
+
|
807 |
+
# Subsequent output
|
808 |
+
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
|
809 |
+
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
810 |
+
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
|
811 |
+
C = C.reshape(batch_size, -1, C.shape[-1])
|
812 |
+
# [bsz, num_heads, head_dim]
|
813 |
+
|
814 |
+
ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype) # Shape: [b, h, d, n]
|
815 |
+
# Reshape ssm_states to merge the first two dimensions
|
816 |
+
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
|
817 |
+
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
|
818 |
+
y = torch.bmm(ssm_states_reshaped, C_reshaped)
|
819 |
+
y = y.view(batch_size, self.num_heads, self.head_dim)
|
820 |
+
|
821 |
+
# D skip connection
|
822 |
+
# [num_heads] -> [num_heads, head_dim]
|
823 |
+
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
|
824 |
+
y = (y + hidden_states * D).to(y.dtype)
|
825 |
+
|
826 |
+
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
|
827 |
+
y = y.reshape(batch_size, -1)[:, None, ...]
|
828 |
+
else:
|
829 |
+
# begin ssd naive implementation without einsums
|
830 |
+
dt = nn.functional.softplus(dt + self.dt_bias)
|
831 |
+
dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
|
832 |
+
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
|
833 |
+
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
|
834 |
+
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
|
835 |
+
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
836 |
+
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
837 |
+
pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size
|
838 |
+
|
839 |
+
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
|
840 |
+
|
841 |
+
# Discretize x and A
|
842 |
+
hidden_states = hidden_states * dt[..., None]
|
843 |
+
A = A.to(hidden_states.dtype) * dt
|
844 |
+
|
845 |
+
# Rearrange into blocks/chunks
|
846 |
+
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
|
847 |
+
|
848 |
+
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
|
849 |
+
A = A.permute(0, 3, 1, 2)
|
850 |
+
A_cumsum = torch.cumsum(A, dim=-1)
|
851 |
+
|
852 |
+
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
853 |
+
# This is the analog of a causal mask
|
854 |
+
L = torch.exp(segment_sum(A))
|
855 |
+
|
856 |
+
# Contraction of C and B to get G (attention-weights like)
|
857 |
+
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :] # shape: (b, c, l, s, h, n)
|
858 |
+
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
|
859 |
+
|
860 |
+
# Compute M, equivalent to applying attention mask to weights
|
861 |
+
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
|
862 |
+
M = M_intermediate.sum(dim=-1)
|
863 |
+
|
864 |
+
# Compute Y_diag (apply to values)
|
865 |
+
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3)
|
866 |
+
|
867 |
+
# 2. Compute the state for each intra-chunk
|
868 |
+
# (right term of low-rank factorization of off-diagonal blocks; B terms)
|
869 |
+
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
|
870 |
+
B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None]
|
871 |
+
states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2)
|
872 |
+
|
873 |
+
# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
|
874 |
+
# (middle term of factorization of off-diag blocks; A terms)
|
875 |
+
if cache_params is not None and cache_position is not None and cache_position[0] > 0:
|
876 |
+
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device)
|
877 |
+
else:
|
878 |
+
previous_states = torch.zeros_like(states[:, :1])
|
879 |
+
states = torch.cat([previous_states, states], dim=1)
|
880 |
+
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
|
881 |
+
decay_chunk = decay_chunk.transpose(1, 3)
|
882 |
+
new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1)
|
883 |
+
states, ssm_state = new_states[:, :-1], new_states[:, -1]
|
884 |
+
|
885 |
+
# 4. Compute state -> output conversion per chunk
|
886 |
+
# (left term of low-rank factorization of off-diagonal blocks; C terms)
|
887 |
+
state_decay_out = torch.exp(A_cumsum)
|
888 |
+
C_times_states = (C[..., None, :] * states[:, :, None, ...])
|
889 |
+
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
|
890 |
+
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
|
891 |
+
|
892 |
+
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
|
893 |
+
y = Y_diag + Y_off
|
894 |
+
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
|
895 |
+
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
|
896 |
+
|
897 |
+
y = y + D_residual
|
898 |
+
# Cutting off padded chunks
|
899 |
+
if pad_size > 0:
|
900 |
+
y = y[:, :seq_len, :, :]
|
901 |
+
y = y.reshape(batch_size, seq_len, -1)
|
902 |
+
|
903 |
+
# Init cache
|
904 |
+
if ssm_state is not None and cache_params is not None:
|
905 |
+
cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state)
|
906 |
+
|
907 |
+
scan_output = self.norm(y, gate)
|
908 |
+
|
909 |
+
# end ssd naive
|
910 |
+
|
911 |
+
# 4. Final linear projection
|
912 |
+
contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
|
913 |
+
return contextualized_states
|
914 |
+
# fmt: on
|
915 |
+
|
916 |
+
def forward(
|
917 |
+
self,
|
918 |
+
hidden_states,
|
919 |
+
cache_params: Optional[Mamba2Cache] = None,
|
920 |
+
cache_position: Optional[torch.LongTensor] = None,
|
921 |
+
attention_mask: Optional[torch.Tensor] = None,
|
922 |
+
):
|
923 |
+
if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
|
924 |
+
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
|
925 |
+
dtype = hidden_states.dtype
|
926 |
+
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
927 |
+
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
|
928 |
+
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
929 |
+
|
930 |
+
return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)
|
931 |
+
|
932 |
+
|
933 |
+
class Mamba2RMSNorm(nn.Module):
|
934 |
+
def __init__(self, hidden_size, eps=1e-6):
|
935 |
+
"""
|
936 |
+
Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
|
937 |
+
"""
|
938 |
+
super().__init__()
|
939 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
940 |
+
self.variance_epsilon = eps
|
941 |
+
|
942 |
+
def forward(self, hidden_states):
|
943 |
+
input_dtype = hidden_states.dtype
|
944 |
+
hidden_states = hidden_states.to(torch.float32)
|
945 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
946 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
947 |
+
return self.weight * hidden_states.to(input_dtype)
|
948 |
+
|
949 |
+
|
950 |
+
class IBS2Block(nn.Module):
|
951 |
+
def __init__(self, config, layer_idx):
|
952 |
+
super().__init__()
|
953 |
+
self.config = config
|
954 |
+
self.layer_idx = layer_idx
|
955 |
+
self.residual_in_fp32 = config.residual_in_fp32
|
956 |
+
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
957 |
+
self.mixer = Mamba2Mixer(config, layer_idx=layer_idx)
|
958 |
+
|
959 |
+
def forward(
|
960 |
+
self,
|
961 |
+
hidden_states,
|
962 |
+
cache_params: Optional[Mamba2Cache] = None,
|
963 |
+
cache_position: Optional[torch.LongTensor] = None,
|
964 |
+
attention_mask: Optional[torch.Tensor] = None,
|
965 |
+
):
|
966 |
+
residual = hidden_states
|
967 |
+
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
|
968 |
+
if self.residual_in_fp32:
|
969 |
+
residual = residual.to(torch.float32)
|
970 |
+
|
971 |
+
hidden_states = self.mixer(
|
972 |
+
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
|
973 |
+
)
|
974 |
+
hidden_states = residual + hidden_states
|
975 |
+
return hidden_states
|
976 |
+
|
977 |
+
|
978 |
+
class Mamba2PreTrainedModel(PreTrainedModel):
|
979 |
+
"""
|
980 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
981 |
+
models.
|
982 |
+
"""
|
983 |
+
|
984 |
+
config_class = IBS2Config
|
985 |
+
base_model_prefix = "backbone"
|
986 |
+
_no_split_modules = ["Mamba2Block"]
|
987 |
+
supports_gradient_checkpointing = True
|
988 |
+
_is_stateful = True
|
989 |
+
|
990 |
+
def _init_weights(self, module):
|
991 |
+
"""Initialize the weights."""
|
992 |
+
if isinstance(module, Mamba2Mixer):
|
993 |
+
#! HACK
|
994 |
+
if getattr(module, "ib_proj"):
|
995 |
+
nn.init.zeros_(module.ib_proj.weight)
|
996 |
+
|
997 |
+
module.A_log._no_weight_decay = True
|
998 |
+
module.D._no_weight_decay = True
|
999 |
+
|
1000 |
+
dt = torch.exp(
|
1001 |
+
torch.rand(self.config.num_heads)
|
1002 |
+
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
|
1003 |
+
+ math.log(self.config.time_step_min)
|
1004 |
+
).clamp(min=self.config.time_step_floor)
|
1005 |
+
|
1006 |
+
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
1007 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
1008 |
+
with torch.no_grad():
|
1009 |
+
module.dt_bias.copy_(inv_dt)
|
1010 |
+
module.dt_bias._no_reinit = True
|
1011 |
+
|
1012 |
+
if isinstance(module, nn.Linear):
|
1013 |
+
if module.bias is not None:
|
1014 |
+
if not getattr(module.bias, "_no_reinit", False):
|
1015 |
+
nn.init.zeros_(module.bias)
|
1016 |
+
elif isinstance(module, nn.Embedding):
|
1017 |
+
nn.init.normal_(module.weight, std=self.config.initializer_range)
|
1018 |
+
|
1019 |
+
if self.config.rescale_prenorm_residual:
|
1020 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
1021 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
1022 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
1023 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
1024 |
+
#
|
1025 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
1026 |
+
for name, p in module.named_parameters():
|
1027 |
+
if name in ["out_proj.weight"]:
|
1028 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
1029 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
1030 |
+
# We need to reinit p since this code could be called multiple times
|
1031 |
+
# Having just p *= scale would repeatedly scale it down
|
1032 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
1033 |
+
with torch.no_grad():
|
1034 |
+
p /= math.sqrt(self.config.num_hidden_layers)
|
1035 |
+
|
1036 |
+
|
1037 |
+
@dataclass
|
1038 |
+
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2
|
1039 |
+
class Mamba2Output(ModelOutput):
|
1040 |
+
"""
|
1041 |
+
Class for the MAMBA2 model outputs.
|
1042 |
+
|
1043 |
+
Args:
|
1044 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
1045 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
1046 |
+
cache_params (`Mamba2Cache`):
|
1047 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
1048 |
+
avoid providing the old `input_ids`.
|
1049 |
+
|
1050 |
+
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
1051 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
1052 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
1053 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
1054 |
+
|
1055 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
1056 |
+
"""
|
1057 |
+
|
1058 |
+
last_hidden_state: Optional[torch.FloatTensor] = None
|
1059 |
+
cache_params: Optional[Mamba2Cache] = None
|
1060 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
1061 |
+
|
1062 |
+
|
1063 |
+
@dataclass
|
1064 |
+
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2
|
1065 |
+
class Mamba2CausalLMOutput(ModelOutput):
|
1066 |
+
"""
|
1067 |
+
Base class for causal language model (or autoregressive) outputs.
|
1068 |
+
|
1069 |
+
Args:
|
1070 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
1071 |
+
Language modeling loss (for next-token prediction).
|
1072 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
1073 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
1074 |
+
cache_params (`Mamba2Cache`):
|
1075 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
1076 |
+
avoid providing the old `input_ids`.
|
1077 |
+
|
1078 |
+
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
1079 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
1080 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
1081 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
1082 |
+
|
1083 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
1084 |
+
"""
|
1085 |
+
|
1086 |
+
loss: Optional[torch.FloatTensor] = None
|
1087 |
+
logits: Optional[torch.FloatTensor] = None
|
1088 |
+
cache_params: Optional[Mamba2Cache] = None
|
1089 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
1090 |
+
|
1091 |
+
|
1092 |
+
MAMBA2_START_DOCSTRING = r"""
|
1093 |
+
|
1094 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1095 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1096 |
+
etc.)
|
1097 |
+
|
1098 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1099 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1100 |
+
and behavior.
|
1101 |
+
|
1102 |
+
Parameters:
|
1103 |
+
config ([`Mamba2Config`]): Model configuration class with all the parameters of the model.
|
1104 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1105 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1106 |
+
"""
|
1107 |
+
|
1108 |
+
MAMBA2_INPUTS_DOCSTRING = r"""
|
1109 |
+
Args:
|
1110 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
1111 |
+
Indices of input sequence tokens in the vocabulary.
|
1112 |
+
|
1113 |
+
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
|
1114 |
+
`input_ids`.
|
1115 |
+
|
1116 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1117 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1118 |
+
|
1119 |
+
[What are input IDs?](../glossary#input-ids)
|
1120 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1121 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1122 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1123 |
+
model's internal embedding lookup matrix.
|
1124 |
+
cache_params (`Mamba2Cache`, *optional*):
|
1125 |
+
If passed along, the model uses the previous state in all the blocks (which will give the output for the
|
1126 |
+
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
|
1127 |
+
use_cache (`bool`, *optional*):
|
1128 |
+
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
|
1129 |
+
output_hidden_states (`bool`, *optional*):
|
1130 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1131 |
+
more detail.
|
1132 |
+
return_dict (`bool`, *optional*):
|
1133 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1134 |
+
cache_position (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1135 |
+
The position of the current input in the cache. This is used to ensure that the cache is correctly updated.
|
1136 |
+
If `cache_params` is passed, `cache_position` should also be passed.
|
1137 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1138 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1139 |
+
|
1140 |
+
- 1 for tokens that are **not masked**,
|
1141 |
+
- 0 for tokens that are **masked**.
|
1142 |
+
|
1143 |
+
[What are attention masks?](../glossary#attention-mask)
|
1144 |
+
"""
|
1145 |
+
|
1146 |
+
|
1147 |
+
@add_start_docstrings(
|
1148 |
+
"The bare MAMBA2 Model transformer outputting raw hidden-states without any specific head on top.",
|
1149 |
+
MAMBA2_START_DOCSTRING,
|
1150 |
+
)
|
1151 |
+
class IBS2Model(Mamba2PreTrainedModel):
|
1152 |
+
def __init__(self, config):
|
1153 |
+
super().__init__(config)
|
1154 |
+
|
1155 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
1156 |
+
self.layers = nn.ModuleList([IBS2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
1157 |
+
|
1158 |
+
self.gradient_checkpointing = False
|
1159 |
+
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
1160 |
+
# Initialize weights and apply final processing
|
1161 |
+
self._register_load_state_dict_pre_hook(self.load_hook)
|
1162 |
+
self.post_init()
|
1163 |
+
|
1164 |
+
def load_hook(self, state_dict, prefix, *args):
|
1165 |
+
for k in state_dict:
|
1166 |
+
if "embedding." in k:
|
1167 |
+
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
|
1168 |
+
break
|
1169 |
+
|
1170 |
+
def get_input_embeddings(self):
|
1171 |
+
return self.embeddings
|
1172 |
+
|
1173 |
+
def set_input_embeddings(self, new_embeddings):
|
1174 |
+
self.embeddings = new_embeddings
|
1175 |
+
|
1176 |
+
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
1177 |
+
@add_code_sample_docstrings(
|
1178 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1179 |
+
output_type=Mamba2Output,
|
1180 |
+
config_class=_CONFIG_FOR_DOC,
|
1181 |
+
)
|
1182 |
+
def forward(
|
1183 |
+
self,
|
1184 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1185 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
1186 |
+
cache_params: Optional[Mamba2Cache] = None,
|
1187 |
+
use_cache: Optional[bool] = None,
|
1188 |
+
output_hidden_states: Optional[bool] = None,
|
1189 |
+
return_dict: Optional[bool] = None,
|
1190 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1191 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1192 |
+
**kwargs,
|
1193 |
+
) -> Union[Tuple, Mamba2Output]:
|
1194 |
+
output_hidden_states = (
|
1195 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1196 |
+
)
|
1197 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
1198 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1199 |
+
|
1200 |
+
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
|
1201 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
1202 |
+
|
1203 |
+
if inputs_embeds is None:
|
1204 |
+
inputs_embeds = self.embeddings(input_ids)
|
1205 |
+
|
1206 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1207 |
+
use_cache = False
|
1208 |
+
|
1209 |
+
if use_cache:
|
1210 |
+
if cache_params is None:
|
1211 |
+
cache_params = Mamba2Cache(
|
1212 |
+
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
1213 |
+
)
|
1214 |
+
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
|
1215 |
+
elif cache_position is None:
|
1216 |
+
# cases when we do manual forward instead of using `model.generate` which will initiate
|
1217 |
+
# `cache_position` and makes sure it is not None, throw error here instead of doing some
|
1218 |
+
# hack to conjecture the current cache position
|
1219 |
+
raise ValueError(
|
1220 |
+
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
|
1221 |
+
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
|
1222 |
+
"be initialized for you automatically"
|
1223 |
+
)
|
1224 |
+
else:
|
1225 |
+
cache_params = None
|
1226 |
+
|
1227 |
+
hidden_states = inputs_embeds
|
1228 |
+
all_hidden_states = () if output_hidden_states else None
|
1229 |
+
for mixer_block in self.layers:
|
1230 |
+
if self.gradient_checkpointing and self.training:
|
1231 |
+
hidden_states = self._gradient_checkpointing_func(
|
1232 |
+
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
|
1233 |
+
)
|
1234 |
+
else:
|
1235 |
+
hidden_states = mixer_block(
|
1236 |
+
hidden_states,
|
1237 |
+
cache_params=cache_params,
|
1238 |
+
cache_position=cache_position,
|
1239 |
+
attention_mask=attention_mask,
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
if output_hidden_states:
|
1243 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1244 |
+
|
1245 |
+
hidden_states = self.norm_f(hidden_states)
|
1246 |
+
|
1247 |
+
if output_hidden_states:
|
1248 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1249 |
+
|
1250 |
+
if not return_dict:
|
1251 |
+
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
|
1252 |
+
|
1253 |
+
return Mamba2Output(
|
1254 |
+
last_hidden_state=hidden_states,
|
1255 |
+
cache_params=cache_params if use_cache else None,
|
1256 |
+
hidden_states=all_hidden_states,
|
1257 |
+
)
|
1258 |
+
|
1259 |
+
class IBS2ForClassification(Mamba2PreTrainedModel):
|
1260 |
+
_tied_weights_keys = []
|
1261 |
+
|
1262 |
+
def __init__(self, config):
|
1263 |
+
super().__init__(config)
|
1264 |
+
self.backbone = IBS2Model(config)
|
1265 |
+
self.cls_head = nn.Linear(config.hidden_size, config.num_classes, bias=False)
|
1266 |
+
# Initialize weights and apply final processing
|
1267 |
+
self.post_init()
|
1268 |
+
|
1269 |
+
def forward(
|
1270 |
+
self,
|
1271 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1272 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1273 |
+
cache_params: Optional[Mamba2Cache] = None,
|
1274 |
+
labels: Optional[torch.LongTensor] = None,
|
1275 |
+
output_hidden_states: Optional[bool] = None,
|
1276 |
+
return_dict: Optional[bool] = None,
|
1277 |
+
use_cache: Optional[bool] = None,
|
1278 |
+
cache_position: Optional[torch.Tensor] = None,
|
1279 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1280 |
+
**kwargs, # for now we need this for generation
|
1281 |
+
):
|
1282 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1283 |
+
|
1284 |
+
mamba2_outputs = self.backbone(
|
1285 |
+
input_ids,
|
1286 |
+
cache_params=cache_params,
|
1287 |
+
inputs_embeds=inputs_embeds,
|
1288 |
+
output_hidden_states=output_hidden_states,
|
1289 |
+
return_dict=return_dict,
|
1290 |
+
use_cache=use_cache,
|
1291 |
+
cache_position=cache_position,
|
1292 |
+
attention_mask=attention_mask,
|
1293 |
+
)
|
1294 |
+
hidden_states = mamba2_outputs[0]
|
1295 |
+
|
1296 |
+
logits = self.cls_head(hidden_states.to(self.cls_head.weight.dtype)).float()
|
1297 |
+
|
1298 |
+
loss = None
|
1299 |
+
if labels is not None:
|
1300 |
+
labels = labels.to(logits.device)
|
1301 |
+
loss_fct = CrossEntropyLoss()
|
1302 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
1303 |
+
|
1304 |
+
if not return_dict:
|
1305 |
+
output = (logits,) + mamba2_outputs[1:]
|
1306 |
+
return ((loss,) + output) if loss is not None else output
|
1307 |
+
|
1308 |
+
return loss
|
1309 |
+
# return Mamba2CausalLMOutput(
|
1310 |
+
# loss=loss,
|
1311 |
+
# logits=logits,
|
1312 |
+
# cache_params=mamba2_outputs.cache_params,
|
1313 |
+
# hidden_states=mamba2_outputs.hidden_states,
|
1314 |
+
# )
|
1315 |
+
|
1316 |
+
@add_start_docstrings(
|
1317 |
+
"""
|
1318 |
+
The MAMBA2 Model transformer with a language modeling head on top (linear layer with weights not tied to the input
|
1319 |
+
embeddings).
|
1320 |
+
""",
|
1321 |
+
MAMBA2_START_DOCSTRING,
|
1322 |
+
)
|
1323 |
+
class IBS2ForCausalLM(Mamba2PreTrainedModel, GenerationMixin):
|
1324 |
+
_tied_weights_keys = []
|
1325 |
+
|
1326 |
+
def __init__(self, config):
|
1327 |
+
super().__init__(config)
|
1328 |
+
self.backbone = IBS2Model(config)
|
1329 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1330 |
+
# Initialize weights and apply final processing
|
1331 |
+
self.post_init()
|
1332 |
+
|
1333 |
+
def get_output_embeddings(self):
|
1334 |
+
return self.lm_head
|
1335 |
+
|
1336 |
+
def set_output_embeddings(self, new_embeddings):
|
1337 |
+
self.lm_head = new_embeddings
|
1338 |
+
|
1339 |
+
def get_input_embeddings(self):
|
1340 |
+
return self.backbone.get_input_embeddings()
|
1341 |
+
|
1342 |
+
def set_input_embeddings(self, new_embeddings):
|
1343 |
+
return self.backbone.set_input_embeddings(new_embeddings)
|
1344 |
+
|
1345 |
+
def prepare_inputs_for_generation(
|
1346 |
+
self,
|
1347 |
+
input_ids,
|
1348 |
+
inputs_embeds=None,
|
1349 |
+
use_cache=None,
|
1350 |
+
cache_params: Optional[Mamba2Cache] = None,
|
1351 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1352 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1353 |
+
**kwargs,
|
1354 |
+
):
|
1355 |
+
# Overwitten -- uses `cache_params` as opposed to `past_key_values`
|
1356 |
+
|
1357 |
+
if use_cache:
|
1358 |
+
# `cache_position` should have been initialized in `generate`
|
1359 |
+
if cache_position is None:
|
1360 |
+
raise ValueError(
|
1361 |
+
"`cache_position` should not be None as it should have been initialized in "
|
1362 |
+
"`model.generate`, you are responsible for passing in a valid `cache_position` if "
|
1363 |
+
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
|
1364 |
+
)
|
1365 |
+
if cache_position[0] > 0:
|
1366 |
+
input_ids = input_ids[:, -1][..., None]
|
1367 |
+
|
1368 |
+
if attention_mask is not None:
|
1369 |
+
attention_mask = None
|
1370 |
+
else:
|
1371 |
+
# we initialize the `cache_position` to full size of `conv_states` at prefill stage
|
1372 |
+
# considering padding will be applied when input length is shorter, and truncation
|
1373 |
+
# will be applied when it is longer, so it will be equivalent to always have it match
|
1374 |
+
# the length of `cache_params.conv_states`, which is `config.conv_kernel`
|
1375 |
+
cache_position = torch.arange(0, self.config.conv_kernel, device=input_ids.device)
|
1376 |
+
|
1377 |
+
if inputs_embeds is not None and cache_params is None:
|
1378 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1379 |
+
else:
|
1380 |
+
model_inputs = {"input_ids": input_ids}
|
1381 |
+
|
1382 |
+
model_inputs.update(
|
1383 |
+
{
|
1384 |
+
"attention_mask": attention_mask,
|
1385 |
+
"cache_params": cache_params,
|
1386 |
+
"use_cache": use_cache,
|
1387 |
+
"cache_position": cache_position,
|
1388 |
+
}
|
1389 |
+
)
|
1390 |
+
return model_inputs
|
1391 |
+
|
1392 |
+
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
1393 |
+
@add_code_sample_docstrings(
|
1394 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1395 |
+
output_type=Mamba2CausalLMOutput,
|
1396 |
+
config_class=_CONFIG_FOR_DOC,
|
1397 |
+
)
|
1398 |
+
def forward(
|
1399 |
+
self,
|
1400 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1401 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1402 |
+
cache_params: Optional[Mamba2Cache] = None,
|
1403 |
+
labels: Optional[torch.LongTensor] = None,
|
1404 |
+
output_hidden_states: Optional[bool] = None,
|
1405 |
+
return_dict: Optional[bool] = None,
|
1406 |
+
use_cache: Optional[bool] = None,
|
1407 |
+
cache_position: Optional[torch.Tensor] = None,
|
1408 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1409 |
+
**kwargs, # for now we need this for generation
|
1410 |
+
) -> Union[Tuple, Mamba2CausalLMOutput]:
|
1411 |
+
r"""
|
1412 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1413 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1414 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1415 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1416 |
+
"""
|
1417 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1418 |
+
|
1419 |
+
mamba2_outputs = self.backbone(
|
1420 |
+
input_ids,
|
1421 |
+
cache_params=cache_params,
|
1422 |
+
inputs_embeds=inputs_embeds,
|
1423 |
+
output_hidden_states=output_hidden_states,
|
1424 |
+
return_dict=return_dict,
|
1425 |
+
use_cache=use_cache,
|
1426 |
+
cache_position=cache_position,
|
1427 |
+
attention_mask=attention_mask,
|
1428 |
+
)
|
1429 |
+
hidden_states = mamba2_outputs[0]
|
1430 |
+
|
1431 |
+
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
|
1432 |
+
|
1433 |
+
loss = None
|
1434 |
+
if labels is not None:
|
1435 |
+
# move labels to correct device to enable model parallelism
|
1436 |
+
labels = labels.to(logits.device)
|
1437 |
+
# Shift so that tokens < n predict n
|
1438 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1439 |
+
shift_labels = labels[..., 1:].contiguous()
|
1440 |
+
# Flatten the tokens
|
1441 |
+
loss_fct = CrossEntropyLoss()
|
1442 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1443 |
+
|
1444 |
+
if not return_dict:
|
1445 |
+
output = (logits,) + mamba2_outputs[1:]
|
1446 |
+
return ((loss,) + output) if loss is not None else output
|
1447 |
+
|
1448 |
+
return Mamba2CausalLMOutput(
|
1449 |
+
loss=loss,
|
1450 |
+
logits=logits,
|
1451 |
+
cache_params=mamba2_outputs.cache_params,
|
1452 |
+
hidden_states=mamba2_outputs.hidden_states,
|
1453 |
+
)
|
1454 |
+
|
1455 |
+
|
1456 |
+
__all__ = ["IBS2ForCausalLM", "IBS2Model", "Mamba2PreTrainedModel", "IBS2Block", "IBS2ForClassification"]
|
1457 |
+
|
pytorch_model-00001-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f87d5313fd2baea17acf628de1b2922c42563b4999c10e12dc3f8bb9073ee75
|
3 |
+
size 4922747462
|
pytorch_model-00002-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:220fee199c4c00bd513b86585915fa89057a080aa9af6a0a6742a7b48711813a
|
3 |
+
size 4824198060
|
pytorch_model-00003-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:245bf3b887b6ce842a330c220e26d5c5d74452a9a0feaa2dec460de4dea24242
|
3 |
+
size 4824214794
|
pytorch_model-00004-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:834b44b5afc90469d12f4072c558db13aec273d6659a0fec88cd04d730917614
|
3 |
+
size 4824198060
|
pytorch_model-00005-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bf50bc90604dc0f7523a05dc68130e1e82ac89b9560208cccc5aca7cdc7814f
|
3 |
+
size 4824198060
|
pytorch_model-00006-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a981ad272e9ed171dd03a82b720ade1b1d35724dc0b61867c7a778fedc62f57
|
3 |
+
size 4922314420
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,589 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 29141663744
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"backbone.embeddings.weight": "pytorch_model-00001-of-00006.bin",
|
7 |
+
"backbone.layers.0.mixer.A_log": "pytorch_model-00001-of-00006.bin",
|
8 |
+
"backbone.layers.0.mixer.D": "pytorch_model-00001-of-00006.bin",
|
9 |
+
"backbone.layers.0.mixer.conv1d.bias": "pytorch_model-00001-of-00006.bin",
|
10 |
+
"backbone.layers.0.mixer.conv1d.weight": "pytorch_model-00001-of-00006.bin",
|
11 |
+
"backbone.layers.0.mixer.dt_bias": "pytorch_model-00001-of-00006.bin",
|
12 |
+
"backbone.layers.0.mixer.ib_proj.weight": "pytorch_model-00001-of-00006.bin",
|
13 |
+
"backbone.layers.0.mixer.in_proj.weight": "pytorch_model-00001-of-00006.bin",
|
14 |
+
"backbone.layers.0.mixer.norm.weight": "pytorch_model-00001-of-00006.bin",
|
15 |
+
"backbone.layers.0.mixer.out_proj.weight": "pytorch_model-00001-of-00006.bin",
|
16 |
+
"backbone.layers.0.norm.weight": "pytorch_model-00001-of-00006.bin",
|
17 |
+
"backbone.layers.1.mixer.A_log": "pytorch_model-00001-of-00006.bin",
|
18 |
+
"backbone.layers.1.mixer.D": "pytorch_model-00001-of-00006.bin",
|
19 |
+
"backbone.layers.1.mixer.conv1d.bias": "pytorch_model-00001-of-00006.bin",
|
20 |
+
"backbone.layers.1.mixer.conv1d.weight": "pytorch_model-00001-of-00006.bin",
|
21 |
+
"backbone.layers.1.mixer.dt_bias": "pytorch_model-00001-of-00006.bin",
|
22 |
+
"backbone.layers.1.mixer.in_proj.weight": "pytorch_model-00001-of-00006.bin",
|
23 |
+
"backbone.layers.1.mixer.norm.weight": "pytorch_model-00001-of-00006.bin",
|
24 |
+
"backbone.layers.1.mixer.out_proj.weight": "pytorch_model-00001-of-00006.bin",
|
25 |
+
"backbone.layers.1.norm.weight": "pytorch_model-00001-of-00006.bin",
|
26 |
+
"backbone.layers.10.mixer.A_log": "pytorch_model-00001-of-00006.bin",
|
27 |
+
"backbone.layers.10.mixer.D": "pytorch_model-00001-of-00006.bin",
|
28 |
+
"backbone.layers.10.mixer.conv1d.bias": "pytorch_model-00001-of-00006.bin",
|
29 |
+
"backbone.layers.10.mixer.conv1d.weight": "pytorch_model-00001-of-00006.bin",
|
30 |
+
"backbone.layers.10.mixer.dt_bias": "pytorch_model-00001-of-00006.bin",
|
31 |
+
"backbone.layers.10.mixer.in_proj.weight": "pytorch_model-00002-of-00006.bin",
|
32 |
+
"backbone.layers.10.mixer.norm.weight": "pytorch_model-00002-of-00006.bin",
|
33 |
+
"backbone.layers.10.mixer.out_proj.weight": "pytorch_model-00002-of-00006.bin",
|
34 |
+
"backbone.layers.10.norm.weight": "pytorch_model-00001-of-00006.bin",
|
35 |
+
"backbone.layers.11.mixer.A_log": "pytorch_model-00002-of-00006.bin",
|
36 |
+
"backbone.layers.11.mixer.D": "pytorch_model-00002-of-00006.bin",
|
37 |
+
"backbone.layers.11.mixer.conv1d.bias": "pytorch_model-00002-of-00006.bin",
|
38 |
+
"backbone.layers.11.mixer.conv1d.weight": "pytorch_model-00002-of-00006.bin",
|
39 |
+
"backbone.layers.11.mixer.dt_bias": "pytorch_model-00002-of-00006.bin",
|
40 |
+
"backbone.layers.11.mixer.in_proj.weight": "pytorch_model-00002-of-00006.bin",
|
41 |
+
"backbone.layers.11.mixer.norm.weight": "pytorch_model-00002-of-00006.bin",
|
42 |
+
"backbone.layers.11.mixer.out_proj.weight": "pytorch_model-00002-of-00006.bin",
|
43 |
+
"backbone.layers.11.norm.weight": "pytorch_model-00002-of-00006.bin",
|
44 |
+
"backbone.layers.12.mixer.A_log": "pytorch_model-00002-of-00006.bin",
|
45 |
+
"backbone.layers.12.mixer.D": "pytorch_model-00002-of-00006.bin",
|
46 |
+
"backbone.layers.12.mixer.conv1d.bias": "pytorch_model-00002-of-00006.bin",
|
47 |
+
"backbone.layers.12.mixer.conv1d.weight": "pytorch_model-00002-of-00006.bin",
|
48 |
+
"backbone.layers.12.mixer.dt_bias": "pytorch_model-00002-of-00006.bin",
|
49 |
+
"backbone.layers.12.mixer.in_proj.weight": "pytorch_model-00002-of-00006.bin",
|
50 |
+
"backbone.layers.12.mixer.norm.weight": "pytorch_model-00002-of-00006.bin",
|
51 |
+
"backbone.layers.12.mixer.out_proj.weight": "pytorch_model-00002-of-00006.bin",
|
52 |
+
"backbone.layers.12.norm.weight": "pytorch_model-00002-of-00006.bin",
|
53 |
+
"backbone.layers.13.mixer.A_log": "pytorch_model-00002-of-00006.bin",
|
54 |
+
"backbone.layers.13.mixer.D": "pytorch_model-00002-of-00006.bin",
|
55 |
+
"backbone.layers.13.mixer.conv1d.bias": "pytorch_model-00002-of-00006.bin",
|
56 |
+
"backbone.layers.13.mixer.conv1d.weight": "pytorch_model-00002-of-00006.bin",
|
57 |
+
"backbone.layers.13.mixer.dt_bias": "pytorch_model-00002-of-00006.bin",
|
58 |
+
"backbone.layers.13.mixer.in_proj.weight": "pytorch_model-00002-of-00006.bin",
|
59 |
+
"backbone.layers.13.mixer.norm.weight": "pytorch_model-00002-of-00006.bin",
|
60 |
+
"backbone.layers.13.mixer.out_proj.weight": "pytorch_model-00002-of-00006.bin",
|
61 |
+
"backbone.layers.13.norm.weight": "pytorch_model-00002-of-00006.bin",
|
62 |
+
"backbone.layers.14.mixer.A_log": "pytorch_model-00002-of-00006.bin",
|
63 |
+
"backbone.layers.14.mixer.D": "pytorch_model-00002-of-00006.bin",
|
64 |
+
"backbone.layers.14.mixer.conv1d.bias": "pytorch_model-00002-of-00006.bin",
|
65 |
+
"backbone.layers.14.mixer.conv1d.weight": "pytorch_model-00002-of-00006.bin",
|
66 |
+
"backbone.layers.14.mixer.dt_bias": "pytorch_model-00002-of-00006.bin",
|
67 |
+
"backbone.layers.14.mixer.in_proj.weight": "pytorch_model-00002-of-00006.bin",
|
68 |
+
"backbone.layers.14.mixer.norm.weight": "pytorch_model-00002-of-00006.bin",
|
69 |
+
"backbone.layers.14.mixer.out_proj.weight": "pytorch_model-00002-of-00006.bin",
|
70 |
+
"backbone.layers.14.norm.weight": "pytorch_model-00002-of-00006.bin",
|
71 |
+
"backbone.layers.15.mixer.A_log": "pytorch_model-00002-of-00006.bin",
|
72 |
+
"backbone.layers.15.mixer.D": "pytorch_model-00002-of-00006.bin",
|
73 |
+
"backbone.layers.15.mixer.conv1d.bias": "pytorch_model-00002-of-00006.bin",
|
74 |
+
"backbone.layers.15.mixer.conv1d.weight": "pytorch_model-00002-of-00006.bin",
|
75 |
+
"backbone.layers.15.mixer.dt_bias": "pytorch_model-00002-of-00006.bin",
|
76 |
+
"backbone.layers.15.mixer.in_proj.weight": "pytorch_model-00002-of-00006.bin",
|
77 |
+
"backbone.layers.15.mixer.norm.weight": "pytorch_model-00002-of-00006.bin",
|
78 |
+
"backbone.layers.15.mixer.out_proj.weight": "pytorch_model-00002-of-00006.bin",
|
79 |
+
"backbone.layers.15.norm.weight": "pytorch_model-00002-of-00006.bin",
|
80 |
+
"backbone.layers.16.mixer.A_log": "pytorch_model-00002-of-00006.bin",
|
81 |
+
"backbone.layers.16.mixer.D": "pytorch_model-00002-of-00006.bin",
|
82 |
+
"backbone.layers.16.mixer.conv1d.bias": "pytorch_model-00002-of-00006.bin",
|
83 |
+
"backbone.layers.16.mixer.conv1d.weight": "pytorch_model-00002-of-00006.bin",
|
84 |
+
"backbone.layers.16.mixer.dt_bias": "pytorch_model-00002-of-00006.bin",
|
85 |
+
"backbone.layers.16.mixer.in_proj.weight": "pytorch_model-00002-of-00006.bin",
|
86 |
+
"backbone.layers.16.mixer.norm.weight": "pytorch_model-00002-of-00006.bin",
|
87 |
+
"backbone.layers.16.mixer.out_proj.weight": "pytorch_model-00002-of-00006.bin",
|
88 |
+
"backbone.layers.16.norm.weight": "pytorch_model-00002-of-00006.bin",
|
89 |
+
"backbone.layers.17.mixer.A_log": "pytorch_model-00002-of-00006.bin",
|
90 |
+
"backbone.layers.17.mixer.D": "pytorch_model-00002-of-00006.bin",
|
91 |
+
"backbone.layers.17.mixer.conv1d.bias": "pytorch_model-00002-of-00006.bin",
|
92 |
+
"backbone.layers.17.mixer.conv1d.weight": "pytorch_model-00002-of-00006.bin",
|
93 |
+
"backbone.layers.17.mixer.dt_bias": "pytorch_model-00002-of-00006.bin",
|
94 |
+
"backbone.layers.17.mixer.in_proj.weight": "pytorch_model-00002-of-00006.bin",
|
95 |
+
"backbone.layers.17.mixer.norm.weight": "pytorch_model-00002-of-00006.bin",
|
96 |
+
"backbone.layers.17.mixer.out_proj.weight": "pytorch_model-00002-of-00006.bin",
|
97 |
+
"backbone.layers.17.norm.weight": "pytorch_model-00002-of-00006.bin",
|
98 |
+
"backbone.layers.18.mixer.A_log": "pytorch_model-00002-of-00006.bin",
|
99 |
+
"backbone.layers.18.mixer.D": "pytorch_model-00002-of-00006.bin",
|
100 |
+
"backbone.layers.18.mixer.conv1d.bias": "pytorch_model-00002-of-00006.bin",
|
101 |
+
"backbone.layers.18.mixer.conv1d.weight": "pytorch_model-00002-of-00006.bin",
|
102 |
+
"backbone.layers.18.mixer.dt_bias": "pytorch_model-00002-of-00006.bin",
|
103 |
+
"backbone.layers.18.mixer.in_proj.weight": "pytorch_model-00002-of-00006.bin",
|
104 |
+
"backbone.layers.18.mixer.norm.weight": "pytorch_model-00002-of-00006.bin",
|
105 |
+
"backbone.layers.18.mixer.out_proj.weight": "pytorch_model-00002-of-00006.bin",
|
106 |
+
"backbone.layers.18.norm.weight": "pytorch_model-00002-of-00006.bin",
|
107 |
+
"backbone.layers.19.mixer.A_log": "pytorch_model-00002-of-00006.bin",
|
108 |
+
"backbone.layers.19.mixer.D": "pytorch_model-00002-of-00006.bin",
|
109 |
+
"backbone.layers.19.mixer.conv1d.bias": "pytorch_model-00002-of-00006.bin",
|
110 |
+
"backbone.layers.19.mixer.conv1d.weight": "pytorch_model-00002-of-00006.bin",
|
111 |
+
"backbone.layers.19.mixer.dt_bias": "pytorch_model-00002-of-00006.bin",
|
112 |
+
"backbone.layers.19.mixer.in_proj.weight": "pytorch_model-00002-of-00006.bin",
|
113 |
+
"backbone.layers.19.mixer.norm.weight": "pytorch_model-00002-of-00006.bin",
|
114 |
+
"backbone.layers.19.mixer.out_proj.weight": "pytorch_model-00002-of-00006.bin",
|
115 |
+
"backbone.layers.19.norm.weight": "pytorch_model-00002-of-00006.bin",
|
116 |
+
"backbone.layers.2.mixer.A_log": "pytorch_model-00001-of-00006.bin",
|
117 |
+
"backbone.layers.2.mixer.D": "pytorch_model-00001-of-00006.bin",
|
118 |
+
"backbone.layers.2.mixer.conv1d.bias": "pytorch_model-00001-of-00006.bin",
|
119 |
+
"backbone.layers.2.mixer.conv1d.weight": "pytorch_model-00001-of-00006.bin",
|
120 |
+
"backbone.layers.2.mixer.dt_bias": "pytorch_model-00001-of-00006.bin",
|
121 |
+
"backbone.layers.2.mixer.in_proj.weight": "pytorch_model-00001-of-00006.bin",
|
122 |
+
"backbone.layers.2.mixer.norm.weight": "pytorch_model-00001-of-00006.bin",
|
123 |
+
"backbone.layers.2.mixer.out_proj.weight": "pytorch_model-00001-of-00006.bin",
|
124 |
+
"backbone.layers.2.norm.weight": "pytorch_model-00001-of-00006.bin",
|
125 |
+
"backbone.layers.20.mixer.A_log": "pytorch_model-00002-of-00006.bin",
|
126 |
+
"backbone.layers.20.mixer.D": "pytorch_model-00002-of-00006.bin",
|
127 |
+
"backbone.layers.20.mixer.conv1d.bias": "pytorch_model-00002-of-00006.bin",
|
128 |
+
"backbone.layers.20.mixer.conv1d.weight": "pytorch_model-00002-of-00006.bin",
|
129 |
+
"backbone.layers.20.mixer.dt_bias": "pytorch_model-00002-of-00006.bin",
|
130 |
+
"backbone.layers.20.mixer.in_proj.weight": "pytorch_model-00002-of-00006.bin",
|
131 |
+
"backbone.layers.20.mixer.norm.weight": "pytorch_model-00002-of-00006.bin",
|
132 |
+
"backbone.layers.20.mixer.out_proj.weight": "pytorch_model-00002-of-00006.bin",
|
133 |
+
"backbone.layers.20.norm.weight": "pytorch_model-00002-of-00006.bin",
|
134 |
+
"backbone.layers.21.mixer.A_log": "pytorch_model-00002-of-00006.bin",
|
135 |
+
"backbone.layers.21.mixer.D": "pytorch_model-00002-of-00006.bin",
|
136 |
+
"backbone.layers.21.mixer.conv1d.bias": "pytorch_model-00002-of-00006.bin",
|
137 |
+
"backbone.layers.21.mixer.conv1d.weight": "pytorch_model-00002-of-00006.bin",
|
138 |
+
"backbone.layers.21.mixer.dt_bias": "pytorch_model-00002-of-00006.bin",
|
139 |
+
"backbone.layers.21.mixer.in_proj.weight": "pytorch_model-00003-of-00006.bin",
|
140 |
+
"backbone.layers.21.mixer.norm.weight": "pytorch_model-00003-of-00006.bin",
|
141 |
+
"backbone.layers.21.mixer.out_proj.weight": "pytorch_model-00003-of-00006.bin",
|
142 |
+
"backbone.layers.21.norm.weight": "pytorch_model-00002-of-00006.bin",
|
143 |
+
"backbone.layers.22.mixer.A_log": "pytorch_model-00003-of-00006.bin",
|
144 |
+
"backbone.layers.22.mixer.D": "pytorch_model-00003-of-00006.bin",
|
145 |
+
"backbone.layers.22.mixer.conv1d.bias": "pytorch_model-00003-of-00006.bin",
|
146 |
+
"backbone.layers.22.mixer.conv1d.weight": "pytorch_model-00003-of-00006.bin",
|
147 |
+
"backbone.layers.22.mixer.dt_bias": "pytorch_model-00003-of-00006.bin",
|
148 |
+
"backbone.layers.22.mixer.in_proj.weight": "pytorch_model-00003-of-00006.bin",
|
149 |
+
"backbone.layers.22.mixer.norm.weight": "pytorch_model-00003-of-00006.bin",
|
150 |
+
"backbone.layers.22.mixer.out_proj.weight": "pytorch_model-00003-of-00006.bin",
|
151 |
+
"backbone.layers.22.norm.weight": "pytorch_model-00003-of-00006.bin",
|
152 |
+
"backbone.layers.23.mixer.A_log": "pytorch_model-00003-of-00006.bin",
|
153 |
+
"backbone.layers.23.mixer.D": "pytorch_model-00003-of-00006.bin",
|
154 |
+
"backbone.layers.23.mixer.conv1d.bias": "pytorch_model-00003-of-00006.bin",
|
155 |
+
"backbone.layers.23.mixer.conv1d.weight": "pytorch_model-00003-of-00006.bin",
|
156 |
+
"backbone.layers.23.mixer.dt_bias": "pytorch_model-00003-of-00006.bin",
|
157 |
+
"backbone.layers.23.mixer.in_proj.weight": "pytorch_model-00003-of-00006.bin",
|
158 |
+
"backbone.layers.23.mixer.norm.weight": "pytorch_model-00003-of-00006.bin",
|
159 |
+
"backbone.layers.23.mixer.out_proj.weight": "pytorch_model-00003-of-00006.bin",
|
160 |
+
"backbone.layers.23.norm.weight": "pytorch_model-00003-of-00006.bin",
|
161 |
+
"backbone.layers.24.mixer.A_log": "pytorch_model-00003-of-00006.bin",
|
162 |
+
"backbone.layers.24.mixer.D": "pytorch_model-00003-of-00006.bin",
|
163 |
+
"backbone.layers.24.mixer.conv1d.bias": "pytorch_model-00003-of-00006.bin",
|
164 |
+
"backbone.layers.24.mixer.conv1d.weight": "pytorch_model-00003-of-00006.bin",
|
165 |
+
"backbone.layers.24.mixer.dt_bias": "pytorch_model-00003-of-00006.bin",
|
166 |
+
"backbone.layers.24.mixer.in_proj.weight": "pytorch_model-00003-of-00006.bin",
|
167 |
+
"backbone.layers.24.mixer.norm.weight": "pytorch_model-00003-of-00006.bin",
|
168 |
+
"backbone.layers.24.mixer.out_proj.weight": "pytorch_model-00003-of-00006.bin",
|
169 |
+
"backbone.layers.24.norm.weight": "pytorch_model-00003-of-00006.bin",
|
170 |
+
"backbone.layers.25.mixer.A_log": "pytorch_model-00003-of-00006.bin",
|
171 |
+
"backbone.layers.25.mixer.D": "pytorch_model-00003-of-00006.bin",
|
172 |
+
"backbone.layers.25.mixer.conv1d.bias": "pytorch_model-00003-of-00006.bin",
|
173 |
+
"backbone.layers.25.mixer.conv1d.weight": "pytorch_model-00003-of-00006.bin",
|
174 |
+
"backbone.layers.25.mixer.dt_bias": "pytorch_model-00003-of-00006.bin",
|
175 |
+
"backbone.layers.25.mixer.in_proj.weight": "pytorch_model-00003-of-00006.bin",
|
176 |
+
"backbone.layers.25.mixer.norm.weight": "pytorch_model-00003-of-00006.bin",
|
177 |
+
"backbone.layers.25.mixer.out_proj.weight": "pytorch_model-00003-of-00006.bin",
|
178 |
+
"backbone.layers.25.norm.weight": "pytorch_model-00003-of-00006.bin",
|
179 |
+
"backbone.layers.26.mixer.A_log": "pytorch_model-00003-of-00006.bin",
|
180 |
+
"backbone.layers.26.mixer.D": "pytorch_model-00003-of-00006.bin",
|
181 |
+
"backbone.layers.26.mixer.conv1d.bias": "pytorch_model-00003-of-00006.bin",
|
182 |
+
"backbone.layers.26.mixer.conv1d.weight": "pytorch_model-00003-of-00006.bin",
|
183 |
+
"backbone.layers.26.mixer.dt_bias": "pytorch_model-00003-of-00006.bin",
|
184 |
+
"backbone.layers.26.mixer.in_proj.weight": "pytorch_model-00003-of-00006.bin",
|
185 |
+
"backbone.layers.26.mixer.norm.weight": "pytorch_model-00003-of-00006.bin",
|
186 |
+
"backbone.layers.26.mixer.out_proj.weight": "pytorch_model-00003-of-00006.bin",
|
187 |
+
"backbone.layers.26.norm.weight": "pytorch_model-00003-of-00006.bin",
|
188 |
+
"backbone.layers.27.mixer.A_log": "pytorch_model-00003-of-00006.bin",
|
189 |
+
"backbone.layers.27.mixer.D": "pytorch_model-00003-of-00006.bin",
|
190 |
+
"backbone.layers.27.mixer.conv1d.bias": "pytorch_model-00003-of-00006.bin",
|
191 |
+
"backbone.layers.27.mixer.conv1d.weight": "pytorch_model-00003-of-00006.bin",
|
192 |
+
"backbone.layers.27.mixer.dt_bias": "pytorch_model-00003-of-00006.bin",
|
193 |
+
"backbone.layers.27.mixer.in_proj.weight": "pytorch_model-00003-of-00006.bin",
|
194 |
+
"backbone.layers.27.mixer.norm.weight": "pytorch_model-00003-of-00006.bin",
|
195 |
+
"backbone.layers.27.mixer.out_proj.weight": "pytorch_model-00003-of-00006.bin",
|
196 |
+
"backbone.layers.27.norm.weight": "pytorch_model-00003-of-00006.bin",
|
197 |
+
"backbone.layers.28.mixer.A_log": "pytorch_model-00003-of-00006.bin",
|
198 |
+
"backbone.layers.28.mixer.D": "pytorch_model-00003-of-00006.bin",
|
199 |
+
"backbone.layers.28.mixer.conv1d.bias": "pytorch_model-00003-of-00006.bin",
|
200 |
+
"backbone.layers.28.mixer.conv1d.weight": "pytorch_model-00003-of-00006.bin",
|
201 |
+
"backbone.layers.28.mixer.dt_bias": "pytorch_model-00003-of-00006.bin",
|
202 |
+
"backbone.layers.28.mixer.in_proj.weight": "pytorch_model-00003-of-00006.bin",
|
203 |
+
"backbone.layers.28.mixer.norm.weight": "pytorch_model-00003-of-00006.bin",
|
204 |
+
"backbone.layers.28.mixer.out_proj.weight": "pytorch_model-00003-of-00006.bin",
|
205 |
+
"backbone.layers.28.norm.weight": "pytorch_model-00003-of-00006.bin",
|
206 |
+
"backbone.layers.29.mixer.A_log": "pytorch_model-00003-of-00006.bin",
|
207 |
+
"backbone.layers.29.mixer.D": "pytorch_model-00003-of-00006.bin",
|
208 |
+
"backbone.layers.29.mixer.conv1d.bias": "pytorch_model-00003-of-00006.bin",
|
209 |
+
"backbone.layers.29.mixer.conv1d.weight": "pytorch_model-00003-of-00006.bin",
|
210 |
+
"backbone.layers.29.mixer.dt_bias": "pytorch_model-00003-of-00006.bin",
|
211 |
+
"backbone.layers.29.mixer.in_proj.weight": "pytorch_model-00003-of-00006.bin",
|
212 |
+
"backbone.layers.29.mixer.norm.weight": "pytorch_model-00003-of-00006.bin",
|
213 |
+
"backbone.layers.29.mixer.out_proj.weight": "pytorch_model-00003-of-00006.bin",
|
214 |
+
"backbone.layers.29.norm.weight": "pytorch_model-00003-of-00006.bin",
|
215 |
+
"backbone.layers.3.mixer.A_log": "pytorch_model-00001-of-00006.bin",
|
216 |
+
"backbone.layers.3.mixer.D": "pytorch_model-00001-of-00006.bin",
|
217 |
+
"backbone.layers.3.mixer.conv1d.bias": "pytorch_model-00001-of-00006.bin",
|
218 |
+
"backbone.layers.3.mixer.conv1d.weight": "pytorch_model-00001-of-00006.bin",
|
219 |
+
"backbone.layers.3.mixer.dt_bias": "pytorch_model-00001-of-00006.bin",
|
220 |
+
"backbone.layers.3.mixer.in_proj.weight": "pytorch_model-00001-of-00006.bin",
|
221 |
+
"backbone.layers.3.mixer.norm.weight": "pytorch_model-00001-of-00006.bin",
|
222 |
+
"backbone.layers.3.mixer.out_proj.weight": "pytorch_model-00001-of-00006.bin",
|
223 |
+
"backbone.layers.3.norm.weight": "pytorch_model-00001-of-00006.bin",
|
224 |
+
"backbone.layers.30.mixer.A_log": "pytorch_model-00003-of-00006.bin",
|
225 |
+
"backbone.layers.30.mixer.D": "pytorch_model-00003-of-00006.bin",
|
226 |
+
"backbone.layers.30.mixer.conv1d.bias": "pytorch_model-00003-of-00006.bin",
|
227 |
+
"backbone.layers.30.mixer.conv1d.weight": "pytorch_model-00003-of-00006.bin",
|
228 |
+
"backbone.layers.30.mixer.dt_bias": "pytorch_model-00003-of-00006.bin",
|
229 |
+
"backbone.layers.30.mixer.in_proj.weight": "pytorch_model-00003-of-00006.bin",
|
230 |
+
"backbone.layers.30.mixer.norm.weight": "pytorch_model-00003-of-00006.bin",
|
231 |
+
"backbone.layers.30.mixer.out_proj.weight": "pytorch_model-00003-of-00006.bin",
|
232 |
+
"backbone.layers.30.norm.weight": "pytorch_model-00003-of-00006.bin",
|
233 |
+
"backbone.layers.31.mixer.A_log": "pytorch_model-00003-of-00006.bin",
|
234 |
+
"backbone.layers.31.mixer.D": "pytorch_model-00003-of-00006.bin",
|
235 |
+
"backbone.layers.31.mixer.conv1d.bias": "pytorch_model-00003-of-00006.bin",
|
236 |
+
"backbone.layers.31.mixer.conv1d.weight": "pytorch_model-00003-of-00006.bin",
|
237 |
+
"backbone.layers.31.mixer.dt_bias": "pytorch_model-00003-of-00006.bin",
|
238 |
+
"backbone.layers.31.mixer.ib_proj.weight": "pytorch_model-00003-of-00006.bin",
|
239 |
+
"backbone.layers.31.mixer.in_proj.weight": "pytorch_model-00003-of-00006.bin",
|
240 |
+
"backbone.layers.31.mixer.norm.weight": "pytorch_model-00003-of-00006.bin",
|
241 |
+
"backbone.layers.31.mixer.out_proj.weight": "pytorch_model-00003-of-00006.bin",
|
242 |
+
"backbone.layers.31.norm.weight": "pytorch_model-00003-of-00006.bin",
|
243 |
+
"backbone.layers.32.mixer.A_log": "pytorch_model-00003-of-00006.bin",
|
244 |
+
"backbone.layers.32.mixer.D": "pytorch_model-00003-of-00006.bin",
|
245 |
+
"backbone.layers.32.mixer.conv1d.bias": "pytorch_model-00003-of-00006.bin",
|
246 |
+
"backbone.layers.32.mixer.conv1d.weight": "pytorch_model-00003-of-00006.bin",
|
247 |
+
"backbone.layers.32.mixer.dt_bias": "pytorch_model-00003-of-00006.bin",
|
248 |
+
"backbone.layers.32.mixer.in_proj.weight": "pytorch_model-00004-of-00006.bin",
|
249 |
+
"backbone.layers.32.mixer.norm.weight": "pytorch_model-00004-of-00006.bin",
|
250 |
+
"backbone.layers.32.mixer.out_proj.weight": "pytorch_model-00004-of-00006.bin",
|
251 |
+
"backbone.layers.32.norm.weight": "pytorch_model-00003-of-00006.bin",
|
252 |
+
"backbone.layers.33.mixer.A_log": "pytorch_model-00004-of-00006.bin",
|
253 |
+
"backbone.layers.33.mixer.D": "pytorch_model-00004-of-00006.bin",
|
254 |
+
"backbone.layers.33.mixer.conv1d.bias": "pytorch_model-00004-of-00006.bin",
|
255 |
+
"backbone.layers.33.mixer.conv1d.weight": "pytorch_model-00004-of-00006.bin",
|
256 |
+
"backbone.layers.33.mixer.dt_bias": "pytorch_model-00004-of-00006.bin",
|
257 |
+
"backbone.layers.33.mixer.in_proj.weight": "pytorch_model-00004-of-00006.bin",
|
258 |
+
"backbone.layers.33.mixer.norm.weight": "pytorch_model-00004-of-00006.bin",
|
259 |
+
"backbone.layers.33.mixer.out_proj.weight": "pytorch_model-00004-of-00006.bin",
|
260 |
+
"backbone.layers.33.norm.weight": "pytorch_model-00004-of-00006.bin",
|
261 |
+
"backbone.layers.34.mixer.A_log": "pytorch_model-00004-of-00006.bin",
|
262 |
+
"backbone.layers.34.mixer.D": "pytorch_model-00004-of-00006.bin",
|
263 |
+
"backbone.layers.34.mixer.conv1d.bias": "pytorch_model-00004-of-00006.bin",
|
264 |
+
"backbone.layers.34.mixer.conv1d.weight": "pytorch_model-00004-of-00006.bin",
|
265 |
+
"backbone.layers.34.mixer.dt_bias": "pytorch_model-00004-of-00006.bin",
|
266 |
+
"backbone.layers.34.mixer.in_proj.weight": "pytorch_model-00004-of-00006.bin",
|
267 |
+
"backbone.layers.34.mixer.norm.weight": "pytorch_model-00004-of-00006.bin",
|
268 |
+
"backbone.layers.34.mixer.out_proj.weight": "pytorch_model-00004-of-00006.bin",
|
269 |
+
"backbone.layers.34.norm.weight": "pytorch_model-00004-of-00006.bin",
|
270 |
+
"backbone.layers.35.mixer.A_log": "pytorch_model-00004-of-00006.bin",
|
271 |
+
"backbone.layers.35.mixer.D": "pytorch_model-00004-of-00006.bin",
|
272 |
+
"backbone.layers.35.mixer.conv1d.bias": "pytorch_model-00004-of-00006.bin",
|
273 |
+
"backbone.layers.35.mixer.conv1d.weight": "pytorch_model-00004-of-00006.bin",
|
274 |
+
"backbone.layers.35.mixer.dt_bias": "pytorch_model-00004-of-00006.bin",
|
275 |
+
"backbone.layers.35.mixer.in_proj.weight": "pytorch_model-00004-of-00006.bin",
|
276 |
+
"backbone.layers.35.mixer.norm.weight": "pytorch_model-00004-of-00006.bin",
|
277 |
+
"backbone.layers.35.mixer.out_proj.weight": "pytorch_model-00004-of-00006.bin",
|
278 |
+
"backbone.layers.35.norm.weight": "pytorch_model-00004-of-00006.bin",
|
279 |
+
"backbone.layers.36.mixer.A_log": "pytorch_model-00004-of-00006.bin",
|
280 |
+
"backbone.layers.36.mixer.D": "pytorch_model-00004-of-00006.bin",
|
281 |
+
"backbone.layers.36.mixer.conv1d.bias": "pytorch_model-00004-of-00006.bin",
|
282 |
+
"backbone.layers.36.mixer.conv1d.weight": "pytorch_model-00004-of-00006.bin",
|
283 |
+
"backbone.layers.36.mixer.dt_bias": "pytorch_model-00004-of-00006.bin",
|
284 |
+
"backbone.layers.36.mixer.in_proj.weight": "pytorch_model-00004-of-00006.bin",
|
285 |
+
"backbone.layers.36.mixer.norm.weight": "pytorch_model-00004-of-00006.bin",
|
286 |
+
"backbone.layers.36.mixer.out_proj.weight": "pytorch_model-00004-of-00006.bin",
|
287 |
+
"backbone.layers.36.norm.weight": "pytorch_model-00004-of-00006.bin",
|
288 |
+
"backbone.layers.37.mixer.A_log": "pytorch_model-00004-of-00006.bin",
|
289 |
+
"backbone.layers.37.mixer.D": "pytorch_model-00004-of-00006.bin",
|
290 |
+
"backbone.layers.37.mixer.conv1d.bias": "pytorch_model-00004-of-00006.bin",
|
291 |
+
"backbone.layers.37.mixer.conv1d.weight": "pytorch_model-00004-of-00006.bin",
|
292 |
+
"backbone.layers.37.mixer.dt_bias": "pytorch_model-00004-of-00006.bin",
|
293 |
+
"backbone.layers.37.mixer.in_proj.weight": "pytorch_model-00004-of-00006.bin",
|
294 |
+
"backbone.layers.37.mixer.norm.weight": "pytorch_model-00004-of-00006.bin",
|
295 |
+
"backbone.layers.37.mixer.out_proj.weight": "pytorch_model-00004-of-00006.bin",
|
296 |
+
"backbone.layers.37.norm.weight": "pytorch_model-00004-of-00006.bin",
|
297 |
+
"backbone.layers.38.mixer.A_log": "pytorch_model-00004-of-00006.bin",
|
298 |
+
"backbone.layers.38.mixer.D": "pytorch_model-00004-of-00006.bin",
|
299 |
+
"backbone.layers.38.mixer.conv1d.bias": "pytorch_model-00004-of-00006.bin",
|
300 |
+
"backbone.layers.38.mixer.conv1d.weight": "pytorch_model-00004-of-00006.bin",
|
301 |
+
"backbone.layers.38.mixer.dt_bias": "pytorch_model-00004-of-00006.bin",
|
302 |
+
"backbone.layers.38.mixer.in_proj.weight": "pytorch_model-00004-of-00006.bin",
|
303 |
+
"backbone.layers.38.mixer.norm.weight": "pytorch_model-00004-of-00006.bin",
|
304 |
+
"backbone.layers.38.mixer.out_proj.weight": "pytorch_model-00004-of-00006.bin",
|
305 |
+
"backbone.layers.38.norm.weight": "pytorch_model-00004-of-00006.bin",
|
306 |
+
"backbone.layers.39.mixer.A_log": "pytorch_model-00004-of-00006.bin",
|
307 |
+
"backbone.layers.39.mixer.D": "pytorch_model-00004-of-00006.bin",
|
308 |
+
"backbone.layers.39.mixer.conv1d.bias": "pytorch_model-00004-of-00006.bin",
|
309 |
+
"backbone.layers.39.mixer.conv1d.weight": "pytorch_model-00004-of-00006.bin",
|
310 |
+
"backbone.layers.39.mixer.dt_bias": "pytorch_model-00004-of-00006.bin",
|
311 |
+
"backbone.layers.39.mixer.in_proj.weight": "pytorch_model-00004-of-00006.bin",
|
312 |
+
"backbone.layers.39.mixer.norm.weight": "pytorch_model-00004-of-00006.bin",
|
313 |
+
"backbone.layers.39.mixer.out_proj.weight": "pytorch_model-00004-of-00006.bin",
|
314 |
+
"backbone.layers.39.norm.weight": "pytorch_model-00004-of-00006.bin",
|
315 |
+
"backbone.layers.4.mixer.A_log": "pytorch_model-00001-of-00006.bin",
|
316 |
+
"backbone.layers.4.mixer.D": "pytorch_model-00001-of-00006.bin",
|
317 |
+
"backbone.layers.4.mixer.conv1d.bias": "pytorch_model-00001-of-00006.bin",
|
318 |
+
"backbone.layers.4.mixer.conv1d.weight": "pytorch_model-00001-of-00006.bin",
|
319 |
+
"backbone.layers.4.mixer.dt_bias": "pytorch_model-00001-of-00006.bin",
|
320 |
+
"backbone.layers.4.mixer.in_proj.weight": "pytorch_model-00001-of-00006.bin",
|
321 |
+
"backbone.layers.4.mixer.norm.weight": "pytorch_model-00001-of-00006.bin",
|
322 |
+
"backbone.layers.4.mixer.out_proj.weight": "pytorch_model-00001-of-00006.bin",
|
323 |
+
"backbone.layers.4.norm.weight": "pytorch_model-00001-of-00006.bin",
|
324 |
+
"backbone.layers.40.mixer.A_log": "pytorch_model-00004-of-00006.bin",
|
325 |
+
"backbone.layers.40.mixer.D": "pytorch_model-00004-of-00006.bin",
|
326 |
+
"backbone.layers.40.mixer.conv1d.bias": "pytorch_model-00004-of-00006.bin",
|
327 |
+
"backbone.layers.40.mixer.conv1d.weight": "pytorch_model-00004-of-00006.bin",
|
328 |
+
"backbone.layers.40.mixer.dt_bias": "pytorch_model-00004-of-00006.bin",
|
329 |
+
"backbone.layers.40.mixer.in_proj.weight": "pytorch_model-00004-of-00006.bin",
|
330 |
+
"backbone.layers.40.mixer.norm.weight": "pytorch_model-00004-of-00006.bin",
|
331 |
+
"backbone.layers.40.mixer.out_proj.weight": "pytorch_model-00004-of-00006.bin",
|
332 |
+
"backbone.layers.40.norm.weight": "pytorch_model-00004-of-00006.bin",
|
333 |
+
"backbone.layers.41.mixer.A_log": "pytorch_model-00004-of-00006.bin",
|
334 |
+
"backbone.layers.41.mixer.D": "pytorch_model-00004-of-00006.bin",
|
335 |
+
"backbone.layers.41.mixer.conv1d.bias": "pytorch_model-00004-of-00006.bin",
|
336 |
+
"backbone.layers.41.mixer.conv1d.weight": "pytorch_model-00004-of-00006.bin",
|
337 |
+
"backbone.layers.41.mixer.dt_bias": "pytorch_model-00004-of-00006.bin",
|
338 |
+
"backbone.layers.41.mixer.in_proj.weight": "pytorch_model-00004-of-00006.bin",
|
339 |
+
"backbone.layers.41.mixer.norm.weight": "pytorch_model-00004-of-00006.bin",
|
340 |
+
"backbone.layers.41.mixer.out_proj.weight": "pytorch_model-00004-of-00006.bin",
|
341 |
+
"backbone.layers.41.norm.weight": "pytorch_model-00004-of-00006.bin",
|
342 |
+
"backbone.layers.42.mixer.A_log": "pytorch_model-00004-of-00006.bin",
|
343 |
+
"backbone.layers.42.mixer.D": "pytorch_model-00004-of-00006.bin",
|
344 |
+
"backbone.layers.42.mixer.conv1d.bias": "pytorch_model-00004-of-00006.bin",
|
345 |
+
"backbone.layers.42.mixer.conv1d.weight": "pytorch_model-00004-of-00006.bin",
|
346 |
+
"backbone.layers.42.mixer.dt_bias": "pytorch_model-00004-of-00006.bin",
|
347 |
+
"backbone.layers.42.mixer.in_proj.weight": "pytorch_model-00004-of-00006.bin",
|
348 |
+
"backbone.layers.42.mixer.norm.weight": "pytorch_model-00004-of-00006.bin",
|
349 |
+
"backbone.layers.42.mixer.out_proj.weight": "pytorch_model-00004-of-00006.bin",
|
350 |
+
"backbone.layers.42.norm.weight": "pytorch_model-00004-of-00006.bin",
|
351 |
+
"backbone.layers.43.mixer.A_log": "pytorch_model-00004-of-00006.bin",
|
352 |
+
"backbone.layers.43.mixer.D": "pytorch_model-00004-of-00006.bin",
|
353 |
+
"backbone.layers.43.mixer.conv1d.bias": "pytorch_model-00004-of-00006.bin",
|
354 |
+
"backbone.layers.43.mixer.conv1d.weight": "pytorch_model-00004-of-00006.bin",
|
355 |
+
"backbone.layers.43.mixer.dt_bias": "pytorch_model-00004-of-00006.bin",
|
356 |
+
"backbone.layers.43.mixer.in_proj.weight": "pytorch_model-00005-of-00006.bin",
|
357 |
+
"backbone.layers.43.mixer.norm.weight": "pytorch_model-00005-of-00006.bin",
|
358 |
+
"backbone.layers.43.mixer.out_proj.weight": "pytorch_model-00005-of-00006.bin",
|
359 |
+
"backbone.layers.43.norm.weight": "pytorch_model-00004-of-00006.bin",
|
360 |
+
"backbone.layers.44.mixer.A_log": "pytorch_model-00005-of-00006.bin",
|
361 |
+
"backbone.layers.44.mixer.D": "pytorch_model-00005-of-00006.bin",
|
362 |
+
"backbone.layers.44.mixer.conv1d.bias": "pytorch_model-00005-of-00006.bin",
|
363 |
+
"backbone.layers.44.mixer.conv1d.weight": "pytorch_model-00005-of-00006.bin",
|
364 |
+
"backbone.layers.44.mixer.dt_bias": "pytorch_model-00005-of-00006.bin",
|
365 |
+
"backbone.layers.44.mixer.in_proj.weight": "pytorch_model-00005-of-00006.bin",
|
366 |
+
"backbone.layers.44.mixer.norm.weight": "pytorch_model-00005-of-00006.bin",
|
367 |
+
"backbone.layers.44.mixer.out_proj.weight": "pytorch_model-00005-of-00006.bin",
|
368 |
+
"backbone.layers.44.norm.weight": "pytorch_model-00005-of-00006.bin",
|
369 |
+
"backbone.layers.45.mixer.A_log": "pytorch_model-00005-of-00006.bin",
|
370 |
+
"backbone.layers.45.mixer.D": "pytorch_model-00005-of-00006.bin",
|
371 |
+
"backbone.layers.45.mixer.conv1d.bias": "pytorch_model-00005-of-00006.bin",
|
372 |
+
"backbone.layers.45.mixer.conv1d.weight": "pytorch_model-00005-of-00006.bin",
|
373 |
+
"backbone.layers.45.mixer.dt_bias": "pytorch_model-00005-of-00006.bin",
|
374 |
+
"backbone.layers.45.mixer.in_proj.weight": "pytorch_model-00005-of-00006.bin",
|
375 |
+
"backbone.layers.45.mixer.norm.weight": "pytorch_model-00005-of-00006.bin",
|
376 |
+
"backbone.layers.45.mixer.out_proj.weight": "pytorch_model-00005-of-00006.bin",
|
377 |
+
"backbone.layers.45.norm.weight": "pytorch_model-00005-of-00006.bin",
|
378 |
+
"backbone.layers.46.mixer.A_log": "pytorch_model-00005-of-00006.bin",
|
379 |
+
"backbone.layers.46.mixer.D": "pytorch_model-00005-of-00006.bin",
|
380 |
+
"backbone.layers.46.mixer.conv1d.bias": "pytorch_model-00005-of-00006.bin",
|
381 |
+
"backbone.layers.46.mixer.conv1d.weight": "pytorch_model-00005-of-00006.bin",
|
382 |
+
"backbone.layers.46.mixer.dt_bias": "pytorch_model-00005-of-00006.bin",
|
383 |
+
"backbone.layers.46.mixer.in_proj.weight": "pytorch_model-00005-of-00006.bin",
|
384 |
+
"backbone.layers.46.mixer.norm.weight": "pytorch_model-00005-of-00006.bin",
|
385 |
+
"backbone.layers.46.mixer.out_proj.weight": "pytorch_model-00005-of-00006.bin",
|
386 |
+
"backbone.layers.46.norm.weight": "pytorch_model-00005-of-00006.bin",
|
387 |
+
"backbone.layers.47.mixer.A_log": "pytorch_model-00005-of-00006.bin",
|
388 |
+
"backbone.layers.47.mixer.D": "pytorch_model-00005-of-00006.bin",
|
389 |
+
"backbone.layers.47.mixer.conv1d.bias": "pytorch_model-00005-of-00006.bin",
|
390 |
+
"backbone.layers.47.mixer.conv1d.weight": "pytorch_model-00005-of-00006.bin",
|
391 |
+
"backbone.layers.47.mixer.dt_bias": "pytorch_model-00005-of-00006.bin",
|
392 |
+
"backbone.layers.47.mixer.in_proj.weight": "pytorch_model-00005-of-00006.bin",
|
393 |
+
"backbone.layers.47.mixer.norm.weight": "pytorch_model-00005-of-00006.bin",
|
394 |
+
"backbone.layers.47.mixer.out_proj.weight": "pytorch_model-00005-of-00006.bin",
|
395 |
+
"backbone.layers.47.norm.weight": "pytorch_model-00005-of-00006.bin",
|
396 |
+
"backbone.layers.48.mixer.A_log": "pytorch_model-00005-of-00006.bin",
|
397 |
+
"backbone.layers.48.mixer.D": "pytorch_model-00005-of-00006.bin",
|
398 |
+
"backbone.layers.48.mixer.conv1d.bias": "pytorch_model-00005-of-00006.bin",
|
399 |
+
"backbone.layers.48.mixer.conv1d.weight": "pytorch_model-00005-of-00006.bin",
|
400 |
+
"backbone.layers.48.mixer.dt_bias": "pytorch_model-00005-of-00006.bin",
|
401 |
+
"backbone.layers.48.mixer.in_proj.weight": "pytorch_model-00005-of-00006.bin",
|
402 |
+
"backbone.layers.48.mixer.norm.weight": "pytorch_model-00005-of-00006.bin",
|
403 |
+
"backbone.layers.48.mixer.out_proj.weight": "pytorch_model-00005-of-00006.bin",
|
404 |
+
"backbone.layers.48.norm.weight": "pytorch_model-00005-of-00006.bin",
|
405 |
+
"backbone.layers.49.mixer.A_log": "pytorch_model-00005-of-00006.bin",
|
406 |
+
"backbone.layers.49.mixer.D": "pytorch_model-00005-of-00006.bin",
|
407 |
+
"backbone.layers.49.mixer.conv1d.bias": "pytorch_model-00005-of-00006.bin",
|
408 |
+
"backbone.layers.49.mixer.conv1d.weight": "pytorch_model-00005-of-00006.bin",
|
409 |
+
"backbone.layers.49.mixer.dt_bias": "pytorch_model-00005-of-00006.bin",
|
410 |
+
"backbone.layers.49.mixer.in_proj.weight": "pytorch_model-00005-of-00006.bin",
|
411 |
+
"backbone.layers.49.mixer.norm.weight": "pytorch_model-00005-of-00006.bin",
|
412 |
+
"backbone.layers.49.mixer.out_proj.weight": "pytorch_model-00005-of-00006.bin",
|
413 |
+
"backbone.layers.49.norm.weight": "pytorch_model-00005-of-00006.bin",
|
414 |
+
"backbone.layers.5.mixer.A_log": "pytorch_model-00001-of-00006.bin",
|
415 |
+
"backbone.layers.5.mixer.D": "pytorch_model-00001-of-00006.bin",
|
416 |
+
"backbone.layers.5.mixer.conv1d.bias": "pytorch_model-00001-of-00006.bin",
|
417 |
+
"backbone.layers.5.mixer.conv1d.weight": "pytorch_model-00001-of-00006.bin",
|
418 |
+
"backbone.layers.5.mixer.dt_bias": "pytorch_model-00001-of-00006.bin",
|
419 |
+
"backbone.layers.5.mixer.in_proj.weight": "pytorch_model-00001-of-00006.bin",
|
420 |
+
"backbone.layers.5.mixer.norm.weight": "pytorch_model-00001-of-00006.bin",
|
421 |
+
"backbone.layers.5.mixer.out_proj.weight": "pytorch_model-00001-of-00006.bin",
|
422 |
+
"backbone.layers.5.norm.weight": "pytorch_model-00001-of-00006.bin",
|
423 |
+
"backbone.layers.50.mixer.A_log": "pytorch_model-00005-of-00006.bin",
|
424 |
+
"backbone.layers.50.mixer.D": "pytorch_model-00005-of-00006.bin",
|
425 |
+
"backbone.layers.50.mixer.conv1d.bias": "pytorch_model-00005-of-00006.bin",
|
426 |
+
"backbone.layers.50.mixer.conv1d.weight": "pytorch_model-00005-of-00006.bin",
|
427 |
+
"backbone.layers.50.mixer.dt_bias": "pytorch_model-00005-of-00006.bin",
|
428 |
+
"backbone.layers.50.mixer.in_proj.weight": "pytorch_model-00005-of-00006.bin",
|
429 |
+
"backbone.layers.50.mixer.norm.weight": "pytorch_model-00005-of-00006.bin",
|
430 |
+
"backbone.layers.50.mixer.out_proj.weight": "pytorch_model-00005-of-00006.bin",
|
431 |
+
"backbone.layers.50.norm.weight": "pytorch_model-00005-of-00006.bin",
|
432 |
+
"backbone.layers.51.mixer.A_log": "pytorch_model-00005-of-00006.bin",
|
433 |
+
"backbone.layers.51.mixer.D": "pytorch_model-00005-of-00006.bin",
|
434 |
+
"backbone.layers.51.mixer.conv1d.bias": "pytorch_model-00005-of-00006.bin",
|
435 |
+
"backbone.layers.51.mixer.conv1d.weight": "pytorch_model-00005-of-00006.bin",
|
436 |
+
"backbone.layers.51.mixer.dt_bias": "pytorch_model-00005-of-00006.bin",
|
437 |
+
"backbone.layers.51.mixer.in_proj.weight": "pytorch_model-00005-of-00006.bin",
|
438 |
+
"backbone.layers.51.mixer.norm.weight": "pytorch_model-00005-of-00006.bin",
|
439 |
+
"backbone.layers.51.mixer.out_proj.weight": "pytorch_model-00005-of-00006.bin",
|
440 |
+
"backbone.layers.51.norm.weight": "pytorch_model-00005-of-00006.bin",
|
441 |
+
"backbone.layers.52.mixer.A_log": "pytorch_model-00005-of-00006.bin",
|
442 |
+
"backbone.layers.52.mixer.D": "pytorch_model-00005-of-00006.bin",
|
443 |
+
"backbone.layers.52.mixer.conv1d.bias": "pytorch_model-00005-of-00006.bin",
|
444 |
+
"backbone.layers.52.mixer.conv1d.weight": "pytorch_model-00005-of-00006.bin",
|
445 |
+
"backbone.layers.52.mixer.dt_bias": "pytorch_model-00005-of-00006.bin",
|
446 |
+
"backbone.layers.52.mixer.in_proj.weight": "pytorch_model-00005-of-00006.bin",
|
447 |
+
"backbone.layers.52.mixer.norm.weight": "pytorch_model-00005-of-00006.bin",
|
448 |
+
"backbone.layers.52.mixer.out_proj.weight": "pytorch_model-00005-of-00006.bin",
|
449 |
+
"backbone.layers.52.norm.weight": "pytorch_model-00005-of-00006.bin",
|
450 |
+
"backbone.layers.53.mixer.A_log": "pytorch_model-00005-of-00006.bin",
|
451 |
+
"backbone.layers.53.mixer.D": "pytorch_model-00005-of-00006.bin",
|
452 |
+
"backbone.layers.53.mixer.conv1d.bias": "pytorch_model-00005-of-00006.bin",
|
453 |
+
"backbone.layers.53.mixer.conv1d.weight": "pytorch_model-00005-of-00006.bin",
|
454 |
+
"backbone.layers.53.mixer.dt_bias": "pytorch_model-00005-of-00006.bin",
|
455 |
+
"backbone.layers.53.mixer.in_proj.weight": "pytorch_model-00005-of-00006.bin",
|
456 |
+
"backbone.layers.53.mixer.norm.weight": "pytorch_model-00005-of-00006.bin",
|
457 |
+
"backbone.layers.53.mixer.out_proj.weight": "pytorch_model-00005-of-00006.bin",
|
458 |
+
"backbone.layers.53.norm.weight": "pytorch_model-00005-of-00006.bin",
|
459 |
+
"backbone.layers.54.mixer.A_log": "pytorch_model-00005-of-00006.bin",
|
460 |
+
"backbone.layers.54.mixer.D": "pytorch_model-00005-of-00006.bin",
|
461 |
+
"backbone.layers.54.mixer.conv1d.bias": "pytorch_model-00005-of-00006.bin",
|
462 |
+
"backbone.layers.54.mixer.conv1d.weight": "pytorch_model-00005-of-00006.bin",
|
463 |
+
"backbone.layers.54.mixer.dt_bias": "pytorch_model-00005-of-00006.bin",
|
464 |
+
"backbone.layers.54.mixer.in_proj.weight": "pytorch_model-00006-of-00006.bin",
|
465 |
+
"backbone.layers.54.mixer.norm.weight": "pytorch_model-00006-of-00006.bin",
|
466 |
+
"backbone.layers.54.mixer.out_proj.weight": "pytorch_model-00006-of-00006.bin",
|
467 |
+
"backbone.layers.54.norm.weight": "pytorch_model-00005-of-00006.bin",
|
468 |
+
"backbone.layers.55.mixer.A_log": "pytorch_model-00006-of-00006.bin",
|
469 |
+
"backbone.layers.55.mixer.D": "pytorch_model-00006-of-00006.bin",
|
470 |
+
"backbone.layers.55.mixer.conv1d.bias": "pytorch_model-00006-of-00006.bin",
|
471 |
+
"backbone.layers.55.mixer.conv1d.weight": "pytorch_model-00006-of-00006.bin",
|
472 |
+
"backbone.layers.55.mixer.dt_bias": "pytorch_model-00006-of-00006.bin",
|
473 |
+
"backbone.layers.55.mixer.in_proj.weight": "pytorch_model-00006-of-00006.bin",
|
474 |
+
"backbone.layers.55.mixer.norm.weight": "pytorch_model-00006-of-00006.bin",
|
475 |
+
"backbone.layers.55.mixer.out_proj.weight": "pytorch_model-00006-of-00006.bin",
|
476 |
+
"backbone.layers.55.norm.weight": "pytorch_model-00006-of-00006.bin",
|
477 |
+
"backbone.layers.56.mixer.A_log": "pytorch_model-00006-of-00006.bin",
|
478 |
+
"backbone.layers.56.mixer.D": "pytorch_model-00006-of-00006.bin",
|
479 |
+
"backbone.layers.56.mixer.conv1d.bias": "pytorch_model-00006-of-00006.bin",
|
480 |
+
"backbone.layers.56.mixer.conv1d.weight": "pytorch_model-00006-of-00006.bin",
|
481 |
+
"backbone.layers.56.mixer.dt_bias": "pytorch_model-00006-of-00006.bin",
|
482 |
+
"backbone.layers.56.mixer.in_proj.weight": "pytorch_model-00006-of-00006.bin",
|
483 |
+
"backbone.layers.56.mixer.norm.weight": "pytorch_model-00006-of-00006.bin",
|
484 |
+
"backbone.layers.56.mixer.out_proj.weight": "pytorch_model-00006-of-00006.bin",
|
485 |
+
"backbone.layers.56.norm.weight": "pytorch_model-00006-of-00006.bin",
|
486 |
+
"backbone.layers.57.mixer.A_log": "pytorch_model-00006-of-00006.bin",
|
487 |
+
"backbone.layers.57.mixer.D": "pytorch_model-00006-of-00006.bin",
|
488 |
+
"backbone.layers.57.mixer.conv1d.bias": "pytorch_model-00006-of-00006.bin",
|
489 |
+
"backbone.layers.57.mixer.conv1d.weight": "pytorch_model-00006-of-00006.bin",
|
490 |
+
"backbone.layers.57.mixer.dt_bias": "pytorch_model-00006-of-00006.bin",
|
491 |
+
"backbone.layers.57.mixer.in_proj.weight": "pytorch_model-00006-of-00006.bin",
|
492 |
+
"backbone.layers.57.mixer.norm.weight": "pytorch_model-00006-of-00006.bin",
|
493 |
+
"backbone.layers.57.mixer.out_proj.weight": "pytorch_model-00006-of-00006.bin",
|
494 |
+
"backbone.layers.57.norm.weight": "pytorch_model-00006-of-00006.bin",
|
495 |
+
"backbone.layers.58.mixer.A_log": "pytorch_model-00006-of-00006.bin",
|
496 |
+
"backbone.layers.58.mixer.D": "pytorch_model-00006-of-00006.bin",
|
497 |
+
"backbone.layers.58.mixer.conv1d.bias": "pytorch_model-00006-of-00006.bin",
|
498 |
+
"backbone.layers.58.mixer.conv1d.weight": "pytorch_model-00006-of-00006.bin",
|
499 |
+
"backbone.layers.58.mixer.dt_bias": "pytorch_model-00006-of-00006.bin",
|
500 |
+
"backbone.layers.58.mixer.in_proj.weight": "pytorch_model-00006-of-00006.bin",
|
501 |
+
"backbone.layers.58.mixer.norm.weight": "pytorch_model-00006-of-00006.bin",
|
502 |
+
"backbone.layers.58.mixer.out_proj.weight": "pytorch_model-00006-of-00006.bin",
|
503 |
+
"backbone.layers.58.norm.weight": "pytorch_model-00006-of-00006.bin",
|
504 |
+
"backbone.layers.59.mixer.A_log": "pytorch_model-00006-of-00006.bin",
|
505 |
+
"backbone.layers.59.mixer.D": "pytorch_model-00006-of-00006.bin",
|
506 |
+
"backbone.layers.59.mixer.conv1d.bias": "pytorch_model-00006-of-00006.bin",
|
507 |
+
"backbone.layers.59.mixer.conv1d.weight": "pytorch_model-00006-of-00006.bin",
|
508 |
+
"backbone.layers.59.mixer.dt_bias": "pytorch_model-00006-of-00006.bin",
|
509 |
+
"backbone.layers.59.mixer.in_proj.weight": "pytorch_model-00006-of-00006.bin",
|
510 |
+
"backbone.layers.59.mixer.norm.weight": "pytorch_model-00006-of-00006.bin",
|
511 |
+
"backbone.layers.59.mixer.out_proj.weight": "pytorch_model-00006-of-00006.bin",
|
512 |
+
"backbone.layers.59.norm.weight": "pytorch_model-00006-of-00006.bin",
|
513 |
+
"backbone.layers.6.mixer.A_log": "pytorch_model-00001-of-00006.bin",
|
514 |
+
"backbone.layers.6.mixer.D": "pytorch_model-00001-of-00006.bin",
|
515 |
+
"backbone.layers.6.mixer.conv1d.bias": "pytorch_model-00001-of-00006.bin",
|
516 |
+
"backbone.layers.6.mixer.conv1d.weight": "pytorch_model-00001-of-00006.bin",
|
517 |
+
"backbone.layers.6.mixer.dt_bias": "pytorch_model-00001-of-00006.bin",
|
518 |
+
"backbone.layers.6.mixer.in_proj.weight": "pytorch_model-00001-of-00006.bin",
|
519 |
+
"backbone.layers.6.mixer.norm.weight": "pytorch_model-00001-of-00006.bin",
|
520 |
+
"backbone.layers.6.mixer.out_proj.weight": "pytorch_model-00001-of-00006.bin",
|
521 |
+
"backbone.layers.6.norm.weight": "pytorch_model-00001-of-00006.bin",
|
522 |
+
"backbone.layers.60.mixer.A_log": "pytorch_model-00006-of-00006.bin",
|
523 |
+
"backbone.layers.60.mixer.D": "pytorch_model-00006-of-00006.bin",
|
524 |
+
"backbone.layers.60.mixer.conv1d.bias": "pytorch_model-00006-of-00006.bin",
|
525 |
+
"backbone.layers.60.mixer.conv1d.weight": "pytorch_model-00006-of-00006.bin",
|
526 |
+
"backbone.layers.60.mixer.dt_bias": "pytorch_model-00006-of-00006.bin",
|
527 |
+
"backbone.layers.60.mixer.in_proj.weight": "pytorch_model-00006-of-00006.bin",
|
528 |
+
"backbone.layers.60.mixer.norm.weight": "pytorch_model-00006-of-00006.bin",
|
529 |
+
"backbone.layers.60.mixer.out_proj.weight": "pytorch_model-00006-of-00006.bin",
|
530 |
+
"backbone.layers.60.norm.weight": "pytorch_model-00006-of-00006.bin",
|
531 |
+
"backbone.layers.61.mixer.A_log": "pytorch_model-00006-of-00006.bin",
|
532 |
+
"backbone.layers.61.mixer.D": "pytorch_model-00006-of-00006.bin",
|
533 |
+
"backbone.layers.61.mixer.conv1d.bias": "pytorch_model-00006-of-00006.bin",
|
534 |
+
"backbone.layers.61.mixer.conv1d.weight": "pytorch_model-00006-of-00006.bin",
|
535 |
+
"backbone.layers.61.mixer.dt_bias": "pytorch_model-00006-of-00006.bin",
|
536 |
+
"backbone.layers.61.mixer.in_proj.weight": "pytorch_model-00006-of-00006.bin",
|
537 |
+
"backbone.layers.61.mixer.norm.weight": "pytorch_model-00006-of-00006.bin",
|
538 |
+
"backbone.layers.61.mixer.out_proj.weight": "pytorch_model-00006-of-00006.bin",
|
539 |
+
"backbone.layers.61.norm.weight": "pytorch_model-00006-of-00006.bin",
|
540 |
+
"backbone.layers.62.mixer.A_log": "pytorch_model-00006-of-00006.bin",
|
541 |
+
"backbone.layers.62.mixer.D": "pytorch_model-00006-of-00006.bin",
|
542 |
+
"backbone.layers.62.mixer.conv1d.bias": "pytorch_model-00006-of-00006.bin",
|
543 |
+
"backbone.layers.62.mixer.conv1d.weight": "pytorch_model-00006-of-00006.bin",
|
544 |
+
"backbone.layers.62.mixer.dt_bias": "pytorch_model-00006-of-00006.bin",
|
545 |
+
"backbone.layers.62.mixer.in_proj.weight": "pytorch_model-00006-of-00006.bin",
|
546 |
+
"backbone.layers.62.mixer.norm.weight": "pytorch_model-00006-of-00006.bin",
|
547 |
+
"backbone.layers.62.mixer.out_proj.weight": "pytorch_model-00006-of-00006.bin",
|
548 |
+
"backbone.layers.62.norm.weight": "pytorch_model-00006-of-00006.bin",
|
549 |
+
"backbone.layers.63.mixer.A_log": "pytorch_model-00006-of-00006.bin",
|
550 |
+
"backbone.layers.63.mixer.D": "pytorch_model-00006-of-00006.bin",
|
551 |
+
"backbone.layers.63.mixer.conv1d.bias": "pytorch_model-00006-of-00006.bin",
|
552 |
+
"backbone.layers.63.mixer.conv1d.weight": "pytorch_model-00006-of-00006.bin",
|
553 |
+
"backbone.layers.63.mixer.dt_bias": "pytorch_model-00006-of-00006.bin",
|
554 |
+
"backbone.layers.63.mixer.ib_proj.weight": "pytorch_model-00006-of-00006.bin",
|
555 |
+
"backbone.layers.63.mixer.in_proj.weight": "pytorch_model-00006-of-00006.bin",
|
556 |
+
"backbone.layers.63.mixer.norm.weight": "pytorch_model-00006-of-00006.bin",
|
557 |
+
"backbone.layers.63.mixer.out_proj.weight": "pytorch_model-00006-of-00006.bin",
|
558 |
+
"backbone.layers.63.norm.weight": "pytorch_model-00006-of-00006.bin",
|
559 |
+
"backbone.layers.7.mixer.A_log": "pytorch_model-00001-of-00006.bin",
|
560 |
+
"backbone.layers.7.mixer.D": "pytorch_model-00001-of-00006.bin",
|
561 |
+
"backbone.layers.7.mixer.conv1d.bias": "pytorch_model-00001-of-00006.bin",
|
562 |
+
"backbone.layers.7.mixer.conv1d.weight": "pytorch_model-00001-of-00006.bin",
|
563 |
+
"backbone.layers.7.mixer.dt_bias": "pytorch_model-00001-of-00006.bin",
|
564 |
+
"backbone.layers.7.mixer.in_proj.weight": "pytorch_model-00001-of-00006.bin",
|
565 |
+
"backbone.layers.7.mixer.norm.weight": "pytorch_model-00001-of-00006.bin",
|
566 |
+
"backbone.layers.7.mixer.out_proj.weight": "pytorch_model-00001-of-00006.bin",
|
567 |
+
"backbone.layers.7.norm.weight": "pytorch_model-00001-of-00006.bin",
|
568 |
+
"backbone.layers.8.mixer.A_log": "pytorch_model-00001-of-00006.bin",
|
569 |
+
"backbone.layers.8.mixer.D": "pytorch_model-00001-of-00006.bin",
|
570 |
+
"backbone.layers.8.mixer.conv1d.bias": "pytorch_model-00001-of-00006.bin",
|
571 |
+
"backbone.layers.8.mixer.conv1d.weight": "pytorch_model-00001-of-00006.bin",
|
572 |
+
"backbone.layers.8.mixer.dt_bias": "pytorch_model-00001-of-00006.bin",
|
573 |
+
"backbone.layers.8.mixer.in_proj.weight": "pytorch_model-00001-of-00006.bin",
|
574 |
+
"backbone.layers.8.mixer.norm.weight": "pytorch_model-00001-of-00006.bin",
|
575 |
+
"backbone.layers.8.mixer.out_proj.weight": "pytorch_model-00001-of-00006.bin",
|
576 |
+
"backbone.layers.8.norm.weight": "pytorch_model-00001-of-00006.bin",
|
577 |
+
"backbone.layers.9.mixer.A_log": "pytorch_model-00001-of-00006.bin",
|
578 |
+
"backbone.layers.9.mixer.D": "pytorch_model-00001-of-00006.bin",
|
579 |
+
"backbone.layers.9.mixer.conv1d.bias": "pytorch_model-00001-of-00006.bin",
|
580 |
+
"backbone.layers.9.mixer.conv1d.weight": "pytorch_model-00001-of-00006.bin",
|
581 |
+
"backbone.layers.9.mixer.dt_bias": "pytorch_model-00001-of-00006.bin",
|
582 |
+
"backbone.layers.9.mixer.in_proj.weight": "pytorch_model-00001-of-00006.bin",
|
583 |
+
"backbone.layers.9.mixer.norm.weight": "pytorch_model-00001-of-00006.bin",
|
584 |
+
"backbone.layers.9.mixer.out_proj.weight": "pytorch_model-00001-of-00006.bin",
|
585 |
+
"backbone.layers.9.norm.weight": "pytorch_model-00001-of-00006.bin",
|
586 |
+
"backbone.norm_f.weight": "pytorch_model-00006-of-00006.bin",
|
587 |
+
"lm_head.weight": "pytorch_model-00006-of-00006.bin"
|
588 |
+
}
|
589 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59f95e28944c062244741268596badc900df86c7f5ded05088d2da22a7379e06
|
3 |
+
size 587583
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|