File size: 36,978 Bytes
8ff7852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
2023-10-25 08:00:15,628 ----------------------------------------------------------------------------------------------------
2023-10-25 08:00:15,629 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(64001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=13, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
2023-10-25 08:00:15,630 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
2023-10-25 08:00:15,630 Train: 14465 sentences
2023-10-25 08:00:15,630 (train_with_dev=False, train_with_test=False)
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
2023-10-25 08:00:15,630 Training Params:
2023-10-25 08:00:15,630 - learning_rate: "3e-05"
2023-10-25 08:00:15,630 - mini_batch_size: "8"
2023-10-25 08:00:15,630 - max_epochs: "10"
2023-10-25 08:00:15,630 - shuffle: "True"
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
2023-10-25 08:00:15,630 Plugins:
2023-10-25 08:00:15,630 - TensorboardLogger
2023-10-25 08:00:15,630 - LinearScheduler | warmup_fraction: '0.1'
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
2023-10-25 08:00:15,630 Final evaluation on model from best epoch (best-model.pt)
2023-10-25 08:00:15,630 - metric: "('micro avg', 'f1-score')"
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
2023-10-25 08:00:15,630 Computation:
2023-10-25 08:00:15,630 - compute on device: cuda:0
2023-10-25 08:00:15,630 - embedding storage: none
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
2023-10-25 08:00:15,630 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
2023-10-25 08:00:15,630 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-25 08:00:31,579 epoch 1 - iter 180/1809 - loss 1.59994791 - time (sec): 15.95 - samples/sec: 2365.16 - lr: 0.000003 - momentum: 0.000000
2023-10-25 08:00:46,626 epoch 1 - iter 360/1809 - loss 0.90942152 - time (sec): 31.00 - samples/sec: 2420.21 - lr: 0.000006 - momentum: 0.000000
2023-10-25 08:01:02,121 epoch 1 - iter 540/1809 - loss 0.65057194 - time (sec): 46.49 - samples/sec: 2437.06 - lr: 0.000009 - momentum: 0.000000
2023-10-25 08:01:17,548 epoch 1 - iter 720/1809 - loss 0.52234297 - time (sec): 61.92 - samples/sec: 2445.01 - lr: 0.000012 - momentum: 0.000000
2023-10-25 08:01:32,921 epoch 1 - iter 900/1809 - loss 0.44356097 - time (sec): 77.29 - samples/sec: 2440.72 - lr: 0.000015 - momentum: 0.000000
2023-10-25 08:01:48,608 epoch 1 - iter 1080/1809 - loss 0.38806485 - time (sec): 92.98 - samples/sec: 2438.35 - lr: 0.000018 - momentum: 0.000000
2023-10-25 08:02:04,004 epoch 1 - iter 1260/1809 - loss 0.34665146 - time (sec): 108.37 - samples/sec: 2444.01 - lr: 0.000021 - momentum: 0.000000
2023-10-25 08:02:19,487 epoch 1 - iter 1440/1809 - loss 0.31692748 - time (sec): 123.86 - samples/sec: 2440.98 - lr: 0.000024 - momentum: 0.000000
2023-10-25 08:02:35,196 epoch 1 - iter 1620/1809 - loss 0.29267973 - time (sec): 139.57 - samples/sec: 2437.07 - lr: 0.000027 - momentum: 0.000000
2023-10-25 08:02:50,837 epoch 1 - iter 1800/1809 - loss 0.27406237 - time (sec): 155.21 - samples/sec: 2436.52 - lr: 0.000030 - momentum: 0.000000
2023-10-25 08:02:51,583 ----------------------------------------------------------------------------------------------------
2023-10-25 08:02:51,583 EPOCH 1 done: loss 0.2733 - lr: 0.000030
2023-10-25 08:02:56,022 DEV : loss 0.11878068745136261 - f1-score (micro avg) 0.6243
2023-10-25 08:02:56,043 saving best model
2023-10-25 08:02:56,600 ----------------------------------------------------------------------------------------------------
2023-10-25 08:03:12,137 epoch 2 - iter 180/1809 - loss 0.08520146 - time (sec): 15.54 - samples/sec: 2457.95 - lr: 0.000030 - momentum: 0.000000
2023-10-25 08:03:28,446 epoch 2 - iter 360/1809 - loss 0.09154462 - time (sec): 31.84 - samples/sec: 2418.86 - lr: 0.000029 - momentum: 0.000000
2023-10-25 08:03:44,444 epoch 2 - iter 540/1809 - loss 0.09248862 - time (sec): 47.84 - samples/sec: 2412.53 - lr: 0.000029 - momentum: 0.000000
2023-10-25 08:04:00,307 epoch 2 - iter 720/1809 - loss 0.08973269 - time (sec): 63.71 - samples/sec: 2404.62 - lr: 0.000029 - momentum: 0.000000
2023-10-25 08:04:16,033 epoch 2 - iter 900/1809 - loss 0.08876132 - time (sec): 79.43 - samples/sec: 2403.58 - lr: 0.000028 - momentum: 0.000000
2023-10-25 08:04:31,870 epoch 2 - iter 1080/1809 - loss 0.08756439 - time (sec): 95.27 - samples/sec: 2394.03 - lr: 0.000028 - momentum: 0.000000
2023-10-25 08:04:47,396 epoch 2 - iter 1260/1809 - loss 0.08711257 - time (sec): 110.79 - samples/sec: 2393.13 - lr: 0.000028 - momentum: 0.000000
2023-10-25 08:05:03,398 epoch 2 - iter 1440/1809 - loss 0.08478479 - time (sec): 126.80 - samples/sec: 2393.23 - lr: 0.000027 - momentum: 0.000000
2023-10-25 08:05:19,435 epoch 2 - iter 1620/1809 - loss 0.08360993 - time (sec): 142.83 - samples/sec: 2388.17 - lr: 0.000027 - momentum: 0.000000
2023-10-25 08:05:34,900 epoch 2 - iter 1800/1809 - loss 0.08306504 - time (sec): 158.30 - samples/sec: 2388.83 - lr: 0.000027 - momentum: 0.000000
2023-10-25 08:05:35,628 ----------------------------------------------------------------------------------------------------
2023-10-25 08:05:35,629 EPOCH 2 done: loss 0.0831 - lr: 0.000027
2023-10-25 08:05:40,837 DEV : loss 0.13267631828784943 - f1-score (micro avg) 0.6358
2023-10-25 08:05:40,859 saving best model
2023-10-25 08:05:41,675 ----------------------------------------------------------------------------------------------------
2023-10-25 08:05:57,585 epoch 3 - iter 180/1809 - loss 0.06089348 - time (sec): 15.91 - samples/sec: 2355.16 - lr: 0.000026 - momentum: 0.000000
2023-10-25 08:06:13,768 epoch 3 - iter 360/1809 - loss 0.06038894 - time (sec): 32.09 - samples/sec: 2360.88 - lr: 0.000026 - momentum: 0.000000
2023-10-25 08:06:29,084 epoch 3 - iter 540/1809 - loss 0.05526036 - time (sec): 47.41 - samples/sec: 2389.71 - lr: 0.000026 - momentum: 0.000000
2023-10-25 08:06:44,661 epoch 3 - iter 720/1809 - loss 0.05749612 - time (sec): 62.98 - samples/sec: 2390.73 - lr: 0.000025 - momentum: 0.000000
2023-10-25 08:07:00,404 epoch 3 - iter 900/1809 - loss 0.05617974 - time (sec): 78.73 - samples/sec: 2403.04 - lr: 0.000025 - momentum: 0.000000
2023-10-25 08:07:16,708 epoch 3 - iter 1080/1809 - loss 0.05706057 - time (sec): 95.03 - samples/sec: 2404.56 - lr: 0.000025 - momentum: 0.000000
2023-10-25 08:07:32,106 epoch 3 - iter 1260/1809 - loss 0.05724190 - time (sec): 110.43 - samples/sec: 2401.49 - lr: 0.000024 - momentum: 0.000000
2023-10-25 08:07:48,254 epoch 3 - iter 1440/1809 - loss 0.05718478 - time (sec): 126.58 - samples/sec: 2408.93 - lr: 0.000024 - momentum: 0.000000
2023-10-25 08:08:04,408 epoch 3 - iter 1620/1809 - loss 0.05826610 - time (sec): 142.73 - samples/sec: 2395.50 - lr: 0.000024 - momentum: 0.000000
2023-10-25 08:08:19,957 epoch 3 - iter 1800/1809 - loss 0.05919743 - time (sec): 158.28 - samples/sec: 2391.38 - lr: 0.000023 - momentum: 0.000000
2023-10-25 08:08:20,676 ----------------------------------------------------------------------------------------------------
2023-10-25 08:08:20,676 EPOCH 3 done: loss 0.0592 - lr: 0.000023
2023-10-25 08:08:25,440 DEV : loss 0.1354532539844513 - f1-score (micro avg) 0.6314
2023-10-25 08:08:25,462 ----------------------------------------------------------------------------------------------------
2023-10-25 08:08:41,845 epoch 4 - iter 180/1809 - loss 0.03568652 - time (sec): 16.38 - samples/sec: 2312.63 - lr: 0.000023 - momentum: 0.000000
2023-10-25 08:08:58,273 epoch 4 - iter 360/1809 - loss 0.03716226 - time (sec): 32.81 - samples/sec: 2346.64 - lr: 0.000023 - momentum: 0.000000
2023-10-25 08:09:13,745 epoch 4 - iter 540/1809 - loss 0.03968774 - time (sec): 48.28 - samples/sec: 2347.42 - lr: 0.000022 - momentum: 0.000000
2023-10-25 08:09:29,537 epoch 4 - iter 720/1809 - loss 0.04000489 - time (sec): 64.07 - samples/sec: 2355.52 - lr: 0.000022 - momentum: 0.000000
2023-10-25 08:09:45,388 epoch 4 - iter 900/1809 - loss 0.03962584 - time (sec): 79.93 - samples/sec: 2362.15 - lr: 0.000022 - momentum: 0.000000
2023-10-25 08:10:01,321 epoch 4 - iter 1080/1809 - loss 0.03940596 - time (sec): 95.86 - samples/sec: 2371.85 - lr: 0.000021 - momentum: 0.000000
2023-10-25 08:10:17,098 epoch 4 - iter 1260/1809 - loss 0.04055800 - time (sec): 111.64 - samples/sec: 2371.02 - lr: 0.000021 - momentum: 0.000000
2023-10-25 08:10:32,621 epoch 4 - iter 1440/1809 - loss 0.04022573 - time (sec): 127.16 - samples/sec: 2373.19 - lr: 0.000021 - momentum: 0.000000
2023-10-25 08:10:48,660 epoch 4 - iter 1620/1809 - loss 0.04065113 - time (sec): 143.20 - samples/sec: 2370.71 - lr: 0.000020 - momentum: 0.000000
2023-10-25 08:11:04,972 epoch 4 - iter 1800/1809 - loss 0.04133841 - time (sec): 159.51 - samples/sec: 2370.42 - lr: 0.000020 - momentum: 0.000000
2023-10-25 08:11:05,824 ----------------------------------------------------------------------------------------------------
2023-10-25 08:11:05,824 EPOCH 4 done: loss 0.0414 - lr: 0.000020
2023-10-25 08:11:10,594 DEV : loss 0.2289542257785797 - f1-score (micro avg) 0.6386
2023-10-25 08:11:10,616 saving best model
2023-10-25 08:11:11,305 ----------------------------------------------------------------------------------------------------
2023-10-25 08:11:26,893 epoch 5 - iter 180/1809 - loss 0.02492765 - time (sec): 15.59 - samples/sec: 2342.07 - lr: 0.000020 - momentum: 0.000000
2023-10-25 08:11:42,990 epoch 5 - iter 360/1809 - loss 0.02595936 - time (sec): 31.68 - samples/sec: 2334.66 - lr: 0.000019 - momentum: 0.000000
2023-10-25 08:11:58,875 epoch 5 - iter 540/1809 - loss 0.02591071 - time (sec): 47.57 - samples/sec: 2350.63 - lr: 0.000019 - momentum: 0.000000
2023-10-25 08:12:14,762 epoch 5 - iter 720/1809 - loss 0.02549117 - time (sec): 63.46 - samples/sec: 2358.16 - lr: 0.000019 - momentum: 0.000000
2023-10-25 08:12:30,706 epoch 5 - iter 900/1809 - loss 0.02448476 - time (sec): 79.40 - samples/sec: 2376.53 - lr: 0.000018 - momentum: 0.000000
2023-10-25 08:12:46,502 epoch 5 - iter 1080/1809 - loss 0.02533076 - time (sec): 95.20 - samples/sec: 2368.81 - lr: 0.000018 - momentum: 0.000000
2023-10-25 08:13:02,210 epoch 5 - iter 1260/1809 - loss 0.02562868 - time (sec): 110.90 - samples/sec: 2367.94 - lr: 0.000018 - momentum: 0.000000
2023-10-25 08:13:18,742 epoch 5 - iter 1440/1809 - loss 0.02590139 - time (sec): 127.44 - samples/sec: 2370.63 - lr: 0.000017 - momentum: 0.000000
2023-10-25 08:13:34,484 epoch 5 - iter 1620/1809 - loss 0.02625493 - time (sec): 143.18 - samples/sec: 2370.26 - lr: 0.000017 - momentum: 0.000000
2023-10-25 08:13:50,871 epoch 5 - iter 1800/1809 - loss 0.02688381 - time (sec): 159.57 - samples/sec: 2371.05 - lr: 0.000017 - momentum: 0.000000
2023-10-25 08:13:51,555 ----------------------------------------------------------------------------------------------------
2023-10-25 08:13:51,555 EPOCH 5 done: loss 0.0269 - lr: 0.000017
2023-10-25 08:13:56,313 DEV : loss 0.26100045442581177 - f1-score (micro avg) 0.6625
2023-10-25 08:13:56,335 saving best model
2023-10-25 08:13:57,053 ----------------------------------------------------------------------------------------------------
2023-10-25 08:14:12,919 epoch 6 - iter 180/1809 - loss 0.01378039 - time (sec): 15.86 - samples/sec: 2282.43 - lr: 0.000016 - momentum: 0.000000
2023-10-25 08:14:28,961 epoch 6 - iter 360/1809 - loss 0.01816354 - time (sec): 31.91 - samples/sec: 2360.47 - lr: 0.000016 - momentum: 0.000000
2023-10-25 08:14:45,179 epoch 6 - iter 540/1809 - loss 0.01885418 - time (sec): 48.12 - samples/sec: 2356.04 - lr: 0.000016 - momentum: 0.000000
2023-10-25 08:15:00,786 epoch 6 - iter 720/1809 - loss 0.01972614 - time (sec): 63.73 - samples/sec: 2349.29 - lr: 0.000015 - momentum: 0.000000
2023-10-25 08:15:16,751 epoch 6 - iter 900/1809 - loss 0.01899198 - time (sec): 79.70 - samples/sec: 2361.69 - lr: 0.000015 - momentum: 0.000000
2023-10-25 08:15:32,360 epoch 6 - iter 1080/1809 - loss 0.01852834 - time (sec): 95.31 - samples/sec: 2362.64 - lr: 0.000015 - momentum: 0.000000
2023-10-25 08:15:48,278 epoch 6 - iter 1260/1809 - loss 0.01797562 - time (sec): 111.22 - samples/sec: 2363.36 - lr: 0.000014 - momentum: 0.000000
2023-10-25 08:16:04,333 epoch 6 - iter 1440/1809 - loss 0.01764648 - time (sec): 127.28 - samples/sec: 2373.74 - lr: 0.000014 - momentum: 0.000000
2023-10-25 08:16:20,288 epoch 6 - iter 1620/1809 - loss 0.01787887 - time (sec): 143.23 - samples/sec: 2372.76 - lr: 0.000014 - momentum: 0.000000
2023-10-25 08:16:36,075 epoch 6 - iter 1800/1809 - loss 0.01811722 - time (sec): 159.02 - samples/sec: 2376.53 - lr: 0.000013 - momentum: 0.000000
2023-10-25 08:16:36,858 ----------------------------------------------------------------------------------------------------
2023-10-25 08:16:36,858 EPOCH 6 done: loss 0.0182 - lr: 0.000013
2023-10-25 08:16:42,101 DEV : loss 0.3313358724117279 - f1-score (micro avg) 0.6553
2023-10-25 08:16:42,123 ----------------------------------------------------------------------------------------------------
2023-10-25 08:16:57,953 epoch 7 - iter 180/1809 - loss 0.00872843 - time (sec): 15.83 - samples/sec: 2415.85 - lr: 0.000013 - momentum: 0.000000
2023-10-25 08:17:13,241 epoch 7 - iter 360/1809 - loss 0.00854091 - time (sec): 31.12 - samples/sec: 2417.71 - lr: 0.000013 - momentum: 0.000000
2023-10-25 08:17:29,025 epoch 7 - iter 540/1809 - loss 0.01084116 - time (sec): 46.90 - samples/sec: 2397.20 - lr: 0.000012 - momentum: 0.000000
2023-10-25 08:17:44,926 epoch 7 - iter 720/1809 - loss 0.01304482 - time (sec): 62.80 - samples/sec: 2399.67 - lr: 0.000012 - momentum: 0.000000
2023-10-25 08:18:01,388 epoch 7 - iter 900/1809 - loss 0.01267124 - time (sec): 79.26 - samples/sec: 2410.58 - lr: 0.000012 - momentum: 0.000000
2023-10-25 08:18:16,849 epoch 7 - iter 1080/1809 - loss 0.01242008 - time (sec): 94.73 - samples/sec: 2406.32 - lr: 0.000011 - momentum: 0.000000
2023-10-25 08:18:33,141 epoch 7 - iter 1260/1809 - loss 0.01230193 - time (sec): 111.02 - samples/sec: 2391.84 - lr: 0.000011 - momentum: 0.000000
2023-10-25 08:18:48,939 epoch 7 - iter 1440/1809 - loss 0.01248631 - time (sec): 126.82 - samples/sec: 2391.04 - lr: 0.000011 - momentum: 0.000000
2023-10-25 08:19:04,921 epoch 7 - iter 1620/1809 - loss 0.01261317 - time (sec): 142.80 - samples/sec: 2390.66 - lr: 0.000010 - momentum: 0.000000
2023-10-25 08:19:20,957 epoch 7 - iter 1800/1809 - loss 0.01276577 - time (sec): 158.83 - samples/sec: 2380.11 - lr: 0.000010 - momentum: 0.000000
2023-10-25 08:19:21,677 ----------------------------------------------------------------------------------------------------
2023-10-25 08:19:21,677 EPOCH 7 done: loss 0.0127 - lr: 0.000010
2023-10-25 08:19:26,940 DEV : loss 0.36011332273483276 - f1-score (micro avg) 0.6616
2023-10-25 08:19:26,962 ----------------------------------------------------------------------------------------------------
2023-10-25 08:19:43,149 epoch 8 - iter 180/1809 - loss 0.00761376 - time (sec): 16.19 - samples/sec: 2367.10 - lr: 0.000010 - momentum: 0.000000
2023-10-25 08:19:59,316 epoch 8 - iter 360/1809 - loss 0.00758239 - time (sec): 32.35 - samples/sec: 2344.06 - lr: 0.000009 - momentum: 0.000000
2023-10-25 08:20:15,488 epoch 8 - iter 540/1809 - loss 0.00857590 - time (sec): 48.52 - samples/sec: 2374.72 - lr: 0.000009 - momentum: 0.000000
2023-10-25 08:20:30,539 epoch 8 - iter 720/1809 - loss 0.00895513 - time (sec): 63.58 - samples/sec: 2393.92 - lr: 0.000009 - momentum: 0.000000
2023-10-25 08:20:46,448 epoch 8 - iter 900/1809 - loss 0.00825738 - time (sec): 79.49 - samples/sec: 2390.01 - lr: 0.000008 - momentum: 0.000000
2023-10-25 08:21:02,541 epoch 8 - iter 1080/1809 - loss 0.00881305 - time (sec): 95.58 - samples/sec: 2386.85 - lr: 0.000008 - momentum: 0.000000
2023-10-25 08:21:18,012 epoch 8 - iter 1260/1809 - loss 0.00882209 - time (sec): 111.05 - samples/sec: 2382.50 - lr: 0.000008 - momentum: 0.000000
2023-10-25 08:21:34,428 epoch 8 - iter 1440/1809 - loss 0.00827827 - time (sec): 127.47 - samples/sec: 2379.38 - lr: 0.000007 - momentum: 0.000000
2023-10-25 08:21:50,011 epoch 8 - iter 1620/1809 - loss 0.00824322 - time (sec): 143.05 - samples/sec: 2380.33 - lr: 0.000007 - momentum: 0.000000
2023-10-25 08:22:05,668 epoch 8 - iter 1800/1809 - loss 0.00850028 - time (sec): 158.70 - samples/sec: 2383.21 - lr: 0.000007 - momentum: 0.000000
2023-10-25 08:22:06,376 ----------------------------------------------------------------------------------------------------
2023-10-25 08:22:06,376 EPOCH 8 done: loss 0.0086 - lr: 0.000007
2023-10-25 08:22:11,644 DEV : loss 0.39194777607917786 - f1-score (micro avg) 0.6577
2023-10-25 08:22:11,666 ----------------------------------------------------------------------------------------------------
2023-10-25 08:22:28,097 epoch 9 - iter 180/1809 - loss 0.00369902 - time (sec): 16.43 - samples/sec: 2368.97 - lr: 0.000006 - momentum: 0.000000
2023-10-25 08:22:44,007 epoch 9 - iter 360/1809 - loss 0.00469730 - time (sec): 32.34 - samples/sec: 2414.47 - lr: 0.000006 - momentum: 0.000000
2023-10-25 08:22:59,689 epoch 9 - iter 540/1809 - loss 0.00431458 - time (sec): 48.02 - samples/sec: 2412.11 - lr: 0.000006 - momentum: 0.000000
2023-10-25 08:23:15,295 epoch 9 - iter 720/1809 - loss 0.00481666 - time (sec): 63.63 - samples/sec: 2391.66 - lr: 0.000005 - momentum: 0.000000
2023-10-25 08:23:31,490 epoch 9 - iter 900/1809 - loss 0.00493696 - time (sec): 79.82 - samples/sec: 2402.05 - lr: 0.000005 - momentum: 0.000000
2023-10-25 08:23:47,176 epoch 9 - iter 1080/1809 - loss 0.00523981 - time (sec): 95.51 - samples/sec: 2394.12 - lr: 0.000005 - momentum: 0.000000
2023-10-25 08:24:02,926 epoch 9 - iter 1260/1809 - loss 0.00497472 - time (sec): 111.26 - samples/sec: 2386.83 - lr: 0.000004 - momentum: 0.000000
2023-10-25 08:24:18,624 epoch 9 - iter 1440/1809 - loss 0.00565406 - time (sec): 126.96 - samples/sec: 2386.65 - lr: 0.000004 - momentum: 0.000000
2023-10-25 08:24:34,491 epoch 9 - iter 1620/1809 - loss 0.00563871 - time (sec): 142.82 - samples/sec: 2386.99 - lr: 0.000004 - momentum: 0.000000
2023-10-25 08:24:50,211 epoch 9 - iter 1800/1809 - loss 0.00567494 - time (sec): 158.54 - samples/sec: 2383.99 - lr: 0.000003 - momentum: 0.000000
2023-10-25 08:24:51,042 ----------------------------------------------------------------------------------------------------
2023-10-25 08:24:51,043 EPOCH 9 done: loss 0.0057 - lr: 0.000003
2023-10-25 08:24:55,799 DEV : loss 0.393858402967453 - f1-score (micro avg) 0.6654
2023-10-25 08:24:55,821 saving best model
2023-10-25 08:24:56,521 ----------------------------------------------------------------------------------------------------
2023-10-25 08:25:12,728 epoch 10 - iter 180/1809 - loss 0.00196544 - time (sec): 16.21 - samples/sec: 2353.56 - lr: 0.000003 - momentum: 0.000000
2023-10-25 08:25:28,376 epoch 10 - iter 360/1809 - loss 0.00228683 - time (sec): 31.85 - samples/sec: 2391.48 - lr: 0.000003 - momentum: 0.000000
2023-10-25 08:25:44,475 epoch 10 - iter 540/1809 - loss 0.00299234 - time (sec): 47.95 - samples/sec: 2361.65 - lr: 0.000002 - momentum: 0.000000
2023-10-25 08:26:00,434 epoch 10 - iter 720/1809 - loss 0.00293109 - time (sec): 63.91 - samples/sec: 2370.47 - lr: 0.000002 - momentum: 0.000000
2023-10-25 08:26:16,100 epoch 10 - iter 900/1809 - loss 0.00302326 - time (sec): 79.58 - samples/sec: 2361.79 - lr: 0.000002 - momentum: 0.000000
2023-10-25 08:26:31,796 epoch 10 - iter 1080/1809 - loss 0.00327400 - time (sec): 95.27 - samples/sec: 2365.70 - lr: 0.000001 - momentum: 0.000000
2023-10-25 08:26:47,735 epoch 10 - iter 1260/1809 - loss 0.00338707 - time (sec): 111.21 - samples/sec: 2357.01 - lr: 0.000001 - momentum: 0.000000
2023-10-25 08:27:03,951 epoch 10 - iter 1440/1809 - loss 0.00361125 - time (sec): 127.43 - samples/sec: 2361.94 - lr: 0.000001 - momentum: 0.000000
2023-10-25 08:27:20,042 epoch 10 - iter 1620/1809 - loss 0.00365904 - time (sec): 143.52 - samples/sec: 2367.04 - lr: 0.000000 - momentum: 0.000000
2023-10-25 08:27:36,103 epoch 10 - iter 1800/1809 - loss 0.00356670 - time (sec): 159.58 - samples/sec: 2371.48 - lr: 0.000000 - momentum: 0.000000
2023-10-25 08:27:36,804 ----------------------------------------------------------------------------------------------------
2023-10-25 08:27:36,804 EPOCH 10 done: loss 0.0036 - lr: 0.000000
2023-10-25 08:27:41,566 DEV : loss 0.40507274866104126 - f1-score (micro avg) 0.6612
2023-10-25 08:27:42,142 ----------------------------------------------------------------------------------------------------
2023-10-25 08:27:42,143 Loading model from best epoch ...
2023-10-25 08:27:44,091 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
2023-10-25 08:27:50,312
Results:
- F-score (micro) 0.6545
- F-score (macro) 0.5095
- Accuracy 0.4987
By class:
precision recall f1-score support
loc 0.6376 0.7919 0.7064 591
pers 0.5787 0.7619 0.6578 357
org 0.1791 0.1519 0.1644 79
micro avg 0.5917 0.7322 0.6545 1027
macro avg 0.4651 0.5686 0.5095 1027
weighted avg 0.5819 0.7322 0.6478 1027
2023-10-25 08:27:50,312 ----------------------------------------------------------------------------------------------------
|