Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model:
|
4 |
+
- openbmb/MiniCPM-Llama3-V-2_5
|
5 |
+
---
|
6 |
+
|
7 |
+
# M-STAR
|
8 |
+
|
9 |
+
<p align="center">
|
10 |
+
<img src="./assets/mstar-logo.png" width="300">
|
11 |
+
</p>
|
12 |
+
|
13 |
+
<p align="center">
|
14 |
+
<a href="https://mstar-lmm.github.io/">Project Page</a>
|
15 |
+
</p>
|
16 |
+
|
17 |
+
M-STAR is a framework to improve the **Multimodal Reasoning** ability of Large Multimodal Models (LMMs) via **Self-Evolving Training**.
|
18 |
+
|
19 |
+
Unlike traditional **Self-Evolving Training**, M-STAR supports **Large Multimodal Models**, **Training with Multimodal Process Reward Models (MPRM)**, and **Adaptive Explorations during Training**.
|
20 |
+
|
21 |
+
This is a multimodal process-supervision model (MPRM) based on [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5), which has been trained using [M-STAR MPRM Training Dataset](). The training data is generated by the model after warm-up training ([M-STAR-8B-v1.0-warmup]()) using the Monte Carlo rollout.
|
22 |
+
|
23 |
+
- **M-STAR Resources**:
|
24 |
+
|
25 |
+
| **Component** |**Description** |
|
26 |
+
|------------------------------|---------------------------------------------------------------------------------------------------------------------|
|
27 |
+
| **M-STAR Model** | A strong LMM for multimodal reasoning, scoring **59.5** on MathVista, based on [MiniCPM-V-2.5](https://github.com/OpenBMB/MiniCPM-V) with 8B parameters. |
|
28 |
+
| **M-STAR PRM** | A Multimodal Process Reward Model (MPRM) that evaluates the quality of multimodal reasoning data at the step level. |
|
29 |
+
| **M-STAR CoT Dataset** | A collection of 100K generated multimodal reasoning data with CoT, where the queries are sourced from [MathV360K](https://huggingface.co/datasets/Zhiqiang007/MathV360K). |
|
30 |
+
| **M-STAR MPRM Training Dataset** | A set of 50K multimodal reasoning data designed for training MPRM. |
|
31 |
+
|
32 |
+
|
33 |
+
## Performance
|
34 |
+
|
35 |
+
### Main Results
|
36 |
+
|
37 |
+
<div align="center">
|
38 |
+
|
39 |
+
| | MathVista | FQA | GPS | MWP | TQA | VQA |
|
40 |
+
|----------------------------|-----------|-------|-------|-------|-------|-------|
|
41 |
+
| **Baselines** | | | | | | |
|
42 |
+
| MiniCPM-V-2.5 | 52.4 | 59.2 | 44.7 | 50.5 | 53.8 | 48.0 |
|
43 |
+
| + warmup | 52.6 | 58.4 | 47.1 | 57.0 | 53.8 | 45.8 |
|
44 |
+
| SFT | 54.8 | 58.7 | 50.5 | 56.5 | 55.7 | 50.8 |
|
45 |
+
| ReST<sup>EM</sup> | 55.1 | 59.1 | 49.5 | 65.6 | 55.1 | 48.0 |
|
46 |
+
| Iterative RFT | 55.7 | 59.1 | 49.5 | 64.5 | 55.1 | 47.5 |
|
47 |
+
| **Static components only** | | | | | | |
|
48 |
+
| Cont. Self-Evolving | 57.2 | 57.6 | 56.3 | 65.1 | 57.0 | 49.7 |
|
49 |
+
| + PRM Re-Rank | 59.2 | 59.1β0.7 | 61.1β14 | 68.3β11.3 | 55.1β1.3 | 51.4β5.6 |
|
50 |
+
| **Automatically tuning the temperature T** | | | | | | |
|
51 |
+
| M-STAR (Reward-Pass@2) | 59.5 (+6.9) | 59.5β1.1 | 59.1β12 | 65.6β8.6 | 58.9β5.1 | 54.2β8.4 |
|
52 |
+
| **Reference** | | | | | | |
|
53 |
+
| GPT-4o | 63.8 | - | - | - | - | - |
|
54 |
+
| Gemini 1.5 Flash | 58.4 | - | - | - | - | - |
|
55 |
+
| GPT-4T 2024-04-09 | 58.1 | - | - | - | - | - |
|
56 |
+
| Pixtral 12B | 58.0 | - | - | - | - | - |
|
57 |
+
| InternLM-XComposer2-VL-7B | 57.6 | 55.0 | 63.0 | 73.7 | 56.3 | 39.7 |
|
58 |
+
| Math-LLaVA-13B | 46.6 | 37.2 | 57.7 | 56.5 | 51.3 | 33.5 |
|
59 |
+
| LLaVA-NeXT-34B | 46.5 | - | - | - | - | - |
|
60 |
+
|
61 |
+
</div>
|
62 |
+
|
63 |
+
<div align="center">
|
64 |
+
|
65 |
+
| Model | MathVista | M3CoT | MMStar-R | MMBench-R | AI2D | Average |
|
66 |
+
|--------------------------|-----------|---------|----------|-----------|--------|----------|
|
67 |
+
| MiniCPM-V-2.5 | 52.4 | 41.2 | 44.6 | 72.6 | 64.4 | 55.0 |
|
68 |
+
| + warmup | 52.6 | 47.8 | 45.1 | 76.9 | 65.9 | 57.7 |
|
69 |
+
| M-STAR | 59.5β6.9 | 48.7β0.9 | 50.7β5.6 | 79.9β3 | 69.1β3.2 | 61.6β3.9 |
|
70 |
+
| Phi-3.5-vision | 46.5 | 39.4 | 42.5 | 56.8 | 47.5 | 46.5 |
|
71 |
+
| + warmup | 49.3 | 46.5 | 44.2 | 70.9 | 65.5 | 55.3 |
|
72 |
+
| M-STAR | 54.5β5.2 | 51.3β4.8 | 48.8β4.6 | 73.6β2.7 | 67.9β2.4 | 59.2β3.9 |
|
73 |
+
| InternVL2-2B | 46.4 | 16.7 | 20.0 | 14.2 | 33.5 | 26.2 |
|
74 |
+
| + warmup | 47.6 | 45.6 | 41.8 | 68.8 | 60.0 | 52.8 |
|
75 |
+
| M-STAR | 50.3β2.7 | 47.1β1.5 | 42.0β0.2 | 67.3β1.5 | 59.7β0.3 | 53.3β0.5 |
|
76 |
+
|
77 |
+
</div>
|
78 |
+
|
79 |
+
### Effectiveness of Adaptively Adjusting Exploration
|
80 |
+
|
81 |
+
<p align="center">
|
82 |
+
<img src="./assets/dynamic.png" width="500">
|
83 |
+
</p>
|
84 |
+
|
85 |
+
Evaluating the effectiveness of adaptively adjusting exploration:
|
86 |
+
|
87 |
+
- **Reward-Pass@2**: The percentage of samples for which there exist correct responses among the top 2 responses ranked by the reward model. This metric directly reflects the exploitation efficacy of the reward model for the current policy. We choose Pass@2 since our training strategy involves selecting the top 2 responses using the reward model.
|
88 |
+
|
89 |
+
"Static" refers to models trained without adaptive exploration, while "Dynamic" indicates those trained with this mechanism. All models shown were trained using the M-STAR framework with optimized components as explored in our paper.
|
90 |
+
|
91 |
+
## M-STAR Resources
|
92 |
+
<div align="center">
|
93 |
+
|
94 |
+
| Resource | Link | License |
|
95 |
+
|------------------------------------------------|-----------|------------|
|
96 |
+
| **M-STAR Datasets**
|
97 |
+
| **M-STAR CoT Dataset** | ... | [MIT License](https://opensource.org/license/mit)
|
98 |
+
| **M-STAR MPRM Training Dataset** | ... | [MIT License](https://opensource.org/license/mit)
|
99 |
+
| **M-STAR Models** | | |
|
100 |
+
| M-STAR-8B-v1.0 | ... | [MiniCPM Model License](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) |
|
101 |
+
| M-STAR-PRM-8B-v1.0 | ... | [MiniCPM Model License](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) |
|
102 |
+
</div>
|