File size: 2,521 Bytes
b3bb8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: murat_5e-05_4_10_categorize
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# murat_5e-05_4_10_categorize

This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8692
- Precision: 0.1736
- Recall: 0.2509
- F1: 0.2052
- Accuracy: 0.8592

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.34          | 1.0   | 685  | 0.3619          | 0.2368    | 0.0526 | 0.0861 | 0.9143   |
| 0.2437        | 2.0   | 1370 | 0.3131          | 0.1412    | 0.2164 | 0.1709 | 0.9130   |
| 0.1881        | 3.0   | 2055 | 0.3078          | 0.1648    | 0.1754 | 0.1700 | 0.9212   |
| 0.078         | 4.0   | 2740 | 0.4330          | 0.1788    | 0.1871 | 0.1829 | 0.9116   |
| 0.1051        | 5.0   | 3425 | 0.4202          | 0.1782    | 0.2105 | 0.1930 | 0.9157   |
| 0.0583        | 6.0   | 4110 | 0.4818          | 0.1780    | 0.1988 | 0.1878 | 0.9154   |
| 0.0321        | 7.0   | 4795 | 0.5147          | 0.1857    | 0.2281 | 0.2047 | 0.9137   |
| 0.0211        | 8.0   | 5480 | 0.5777          | 0.2071    | 0.2047 | 0.2059 | 0.9154   |
| 0.0189        | 9.0   | 6165 | 0.5808          | 0.2074    | 0.2281 | 0.2173 | 0.9149   |
| 0.0089        | 10.0  | 6850 | 0.5985          | 0.2021    | 0.2222 | 0.2117 | 0.9152   |


### Framework versions

- Transformers 4.48.2
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0