File size: 2,529 Bytes
5393cc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: gpt_5e-05_4_10_categorize
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt_5e-05_4_10_categorize

This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9790
- Precision: 0.2163
- Recall: 0.3439
- F1: 0.2656
- Accuracy: 0.8541

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3889        | 1.0   | 1151  | 0.4005          | 0.1733    | 0.1860 | 0.1794 | 0.8792   |
| 0.3552        | 2.0   | 2302  | 0.4328          | 0.1560    | 0.2229 | 0.1836 | 0.8549   |
| 0.2336        | 3.0   | 3453  | 0.4759          | 0.1595    | 0.2151 | 0.1832 | 0.8681   |
| 0.1549        | 4.0   | 4604  | 0.5553          | 0.1601    | 0.2132 | 0.1829 | 0.8703   |
| 0.0994        | 5.0   | 5755  | 0.6101          | 0.1893    | 0.2539 | 0.2169 | 0.8722   |
| 0.0727        | 6.0   | 6906  | 0.6757          | 0.2049    | 0.2422 | 0.2220 | 0.8727   |
| 0.0509        | 7.0   | 8057  | 0.7397          | 0.2054    | 0.2519 | 0.2263 | 0.8703   |
| 0.0339        | 8.0   | 9208  | 0.8222          | 0.2388    | 0.2578 | 0.2479 | 0.8788   |
| 0.0249        | 9.0   | 10359 | 0.8676          | 0.2309    | 0.2752 | 0.2511 | 0.8736   |
| 0.0122        | 10.0  | 11510 | 0.8985          | 0.2432    | 0.2752 | 0.2582 | 0.8777   |


### Framework versions

- Transformers 4.48.2
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0