--- library_name: transformers license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: best_model_categorize results: [] --- # best_model_categorize This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0431 - Precision: 0.6642 - Recall: 0.7093 - F1: 0.6860 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 309 | 0.2587 | 0.1656 | 0.2316 | 0.1931 | 0.9131 | | 0.3346 | 2.0 | 618 | 0.1543 | 0.3189 | 0.4404 | 0.3700 | 0.9524 | | 0.3346 | 3.0 | 927 | 0.0821 | 0.4876 | 0.5654 | 0.5236 | 0.9732 | | 0.1746 | 4.0 | 1236 | 0.0551 | 0.6009 | 0.6621 | 0.6300 | 0.9816 | | 0.083 | 5.0 | 1545 | 0.0431 | 0.6642 | 0.7093 | 0.6860 | 0.9857 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0