--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_tiny_sgd_001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9 --- # smids_5x_deit_tiny_sgd_001_fold3 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2814 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7088 | 1.0 | 375 | 0.7565 | 0.725 | | 0.5465 | 2.0 | 750 | 0.5503 | 0.8 | | 0.3877 | 3.0 | 1125 | 0.4580 | 0.8417 | | 0.403 | 4.0 | 1500 | 0.4113 | 0.86 | | 0.4127 | 5.0 | 1875 | 0.3842 | 0.8633 | | 0.3531 | 6.0 | 2250 | 0.3637 | 0.8717 | | 0.3784 | 7.0 | 2625 | 0.3477 | 0.8717 | | 0.3315 | 8.0 | 3000 | 0.3357 | 0.88 | | 0.281 | 9.0 | 3375 | 0.3284 | 0.8817 | | 0.2976 | 10.0 | 3750 | 0.3184 | 0.8783 | | 0.2299 | 11.0 | 4125 | 0.3116 | 0.8817 | | 0.2672 | 12.0 | 4500 | 0.3085 | 0.8867 | | 0.268 | 13.0 | 4875 | 0.3033 | 0.89 | | 0.2659 | 14.0 | 5250 | 0.3003 | 0.89 | | 0.2573 | 15.0 | 5625 | 0.2955 | 0.885 | | 0.2268 | 16.0 | 6000 | 0.2941 | 0.8917 | | 0.2876 | 17.0 | 6375 | 0.2932 | 0.895 | | 0.2734 | 18.0 | 6750 | 0.2907 | 0.8933 | | 0.2415 | 19.0 | 7125 | 0.2883 | 0.8933 | | 0.2097 | 20.0 | 7500 | 0.2877 | 0.895 | | 0.1726 | 21.0 | 7875 | 0.2847 | 0.895 | | 0.1753 | 22.0 | 8250 | 0.2862 | 0.8983 | | 0.2074 | 23.0 | 8625 | 0.2848 | 0.9017 | | 0.238 | 24.0 | 9000 | 0.2832 | 0.8983 | | 0.2264 | 25.0 | 9375 | 0.2826 | 0.9017 | | 0.2196 | 26.0 | 9750 | 0.2825 | 0.9017 | | 0.1923 | 27.0 | 10125 | 0.2817 | 0.9017 | | 0.2238 | 28.0 | 10500 | 0.2812 | 0.9033 | | 0.1599 | 29.0 | 10875 | 0.2828 | 0.9 | | 0.1957 | 30.0 | 11250 | 0.2818 | 0.9017 | | 0.2026 | 31.0 | 11625 | 0.2804 | 0.905 | | 0.2064 | 32.0 | 12000 | 0.2838 | 0.9 | | 0.2244 | 33.0 | 12375 | 0.2835 | 0.9 | | 0.17 | 34.0 | 12750 | 0.2797 | 0.8967 | | 0.1503 | 35.0 | 13125 | 0.2806 | 0.9033 | | 0.1857 | 36.0 | 13500 | 0.2802 | 0.9017 | | 0.1698 | 37.0 | 13875 | 0.2813 | 0.9017 | | 0.1679 | 38.0 | 14250 | 0.2797 | 0.9033 | | 0.1579 | 39.0 | 14625 | 0.2818 | 0.9017 | | 0.1487 | 40.0 | 15000 | 0.2812 | 0.9 | | 0.1671 | 41.0 | 15375 | 0.2807 | 0.9 | | 0.1398 | 42.0 | 15750 | 0.2815 | 0.9017 | | 0.1981 | 43.0 | 16125 | 0.2800 | 0.9017 | | 0.1508 | 44.0 | 16500 | 0.2816 | 0.9017 | | 0.17 | 45.0 | 16875 | 0.2807 | 0.9 | | 0.1582 | 46.0 | 17250 | 0.2810 | 0.9 | | 0.197 | 47.0 | 17625 | 0.2812 | 0.9 | | 0.1587 | 48.0 | 18000 | 0.2815 | 0.9017 | | 0.1477 | 49.0 | 18375 | 0.2815 | 0.9 | | 0.1575 | 50.0 | 18750 | 0.2814 | 0.9 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2