File size: 4,873 Bytes
f84af33
 
68fc6d4
f84af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68fc6d4
f84af33
 
 
 
 
 
 
68fc6d4
f84af33
68fc6d4
 
f84af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68fc6d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f84af33
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_adamax_0001_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9115191986644408
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smids_5x_deit_tiny_adamax_0001_fold1

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7374
- Accuracy: 0.9115

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2308        | 1.0   | 376   | 0.2388          | 0.9115   |
| 0.1317        | 2.0   | 752   | 0.2582          | 0.9098   |
| 0.1686        | 3.0   | 1128  | 0.4270          | 0.8831   |
| 0.0405        | 4.0   | 1504  | 0.4962          | 0.8781   |
| 0.0366        | 5.0   | 1880  | 0.4884          | 0.8965   |
| 0.0181        | 6.0   | 2256  | 0.6032          | 0.8982   |
| 0.0062        | 7.0   | 2632  | 0.6900          | 0.8965   |
| 0.0021        | 8.0   | 3008  | 0.5787          | 0.9115   |
| 0.0022        | 9.0   | 3384  | 0.7270          | 0.8932   |
| 0.0002        | 10.0  | 3760  | 0.6268          | 0.9115   |
| 0.0012        | 11.0  | 4136  | 0.5883          | 0.9082   |
| 0.0001        | 12.0  | 4512  | 0.5732          | 0.9165   |
| 0.0           | 13.0  | 4888  | 0.5583          | 0.9215   |
| 0.011         | 14.0  | 5264  | 0.7089          | 0.9032   |
| 0.0002        | 15.0  | 5640  | 0.7954          | 0.8815   |
| 0.0           | 16.0  | 6016  | 0.6772          | 0.8965   |
| 0.0           | 17.0  | 6392  | 0.6923          | 0.9032   |
| 0.0           | 18.0  | 6768  | 0.7006          | 0.8982   |
| 0.0           | 19.0  | 7144  | 0.6930          | 0.9032   |
| 0.0149        | 20.0  | 7520  | 0.7767          | 0.8948   |
| 0.0           | 21.0  | 7896  | 0.6643          | 0.9132   |
| 0.0           | 22.0  | 8272  | 0.6887          | 0.9015   |
| 0.0           | 23.0  | 8648  | 0.6854          | 0.8998   |
| 0.0001        | 24.0  | 9024  | 0.6666          | 0.9132   |
| 0.0           | 25.0  | 9400  | 0.6680          | 0.9082   |
| 0.0033        | 26.0  | 9776  | 0.6701          | 0.9115   |
| 0.0           | 27.0  | 10152 | 0.6769          | 0.8998   |
| 0.0           | 28.0  | 10528 | 0.6638          | 0.9115   |
| 0.0042        | 29.0  | 10904 | 0.6671          | 0.9165   |
| 0.004         | 30.0  | 11280 | 0.6642          | 0.9115   |
| 0.0           | 31.0  | 11656 | 0.6776          | 0.9098   |
| 0.0           | 32.0  | 12032 | 0.6835          | 0.9098   |
| 0.0           | 33.0  | 12408 | 0.7324          | 0.9048   |
| 0.0           | 34.0  | 12784 | 0.7298          | 0.9048   |
| 0.0           | 35.0  | 13160 | 0.7063          | 0.9098   |
| 0.0           | 36.0  | 13536 | 0.7145          | 0.9098   |
| 0.0           | 37.0  | 13912 | 0.7213          | 0.9082   |
| 0.0           | 38.0  | 14288 | 0.7239          | 0.9098   |
| 0.0           | 39.0  | 14664 | 0.7296          | 0.9065   |
| 0.0           | 40.0  | 15040 | 0.7280          | 0.9082   |
| 0.0           | 41.0  | 15416 | 0.7172          | 0.9098   |
| 0.0           | 42.0  | 15792 | 0.7224          | 0.9098   |
| 0.0           | 43.0  | 16168 | 0.7245          | 0.9115   |
| 0.0           | 44.0  | 16544 | 0.7307          | 0.9098   |
| 0.0           | 45.0  | 16920 | 0.7306          | 0.9098   |
| 0.0026        | 46.0  | 17296 | 0.7273          | 0.9098   |
| 0.0           | 47.0  | 17672 | 0.7340          | 0.9132   |
| 0.0           | 48.0  | 18048 | 0.7346          | 0.9132   |
| 0.0           | 49.0  | 18424 | 0.7359          | 0.9132   |
| 0.0022        | 50.0  | 18800 | 0.7374          | 0.9115   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2