Commit
·
7283702
1
Parent(s):
fda69b0
End of training
Browse files- README.md +125 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/deit-small-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: smids_5x_deit_small_rms_001_fold1
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: test
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.7662771285475793
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# smids_5x_deit_small_rms_001_fold1
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5438
|
36 |
+
- Accuracy: 0.7663
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.001
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 50
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
68 |
+
| 0.9114 | 1.0 | 376 | 0.8706 | 0.5559 |
|
69 |
+
| 0.8509 | 2.0 | 752 | 1.2414 | 0.3456 |
|
70 |
+
| 0.8099 | 3.0 | 1128 | 1.0576 | 0.4007 |
|
71 |
+
| 0.8085 | 4.0 | 1504 | 0.8246 | 0.5442 |
|
72 |
+
| 0.8886 | 5.0 | 1880 | 0.8245 | 0.5376 |
|
73 |
+
| 0.7819 | 6.0 | 2256 | 0.7875 | 0.5977 |
|
74 |
+
| 0.7498 | 7.0 | 2632 | 0.8002 | 0.6344 |
|
75 |
+
| 0.7083 | 8.0 | 3008 | 0.8113 | 0.6027 |
|
76 |
+
| 0.7609 | 9.0 | 3384 | 0.7440 | 0.6594 |
|
77 |
+
| 0.7953 | 10.0 | 3760 | 0.7639 | 0.5993 |
|
78 |
+
| 0.694 | 11.0 | 4136 | 0.7065 | 0.6594 |
|
79 |
+
| 0.7315 | 12.0 | 4512 | 0.7188 | 0.6277 |
|
80 |
+
| 0.7192 | 13.0 | 4888 | 0.6863 | 0.7229 |
|
81 |
+
| 0.6504 | 14.0 | 5264 | 0.6661 | 0.6828 |
|
82 |
+
| 0.6524 | 15.0 | 5640 | 0.6777 | 0.6661 |
|
83 |
+
| 0.5701 | 16.0 | 6016 | 0.7272 | 0.6561 |
|
84 |
+
| 0.5543 | 17.0 | 6392 | 0.7125 | 0.6878 |
|
85 |
+
| 0.6439 | 18.0 | 6768 | 0.6430 | 0.7028 |
|
86 |
+
| 0.648 | 19.0 | 7144 | 0.6863 | 0.6928 |
|
87 |
+
| 0.5899 | 20.0 | 7520 | 0.6226 | 0.7162 |
|
88 |
+
| 0.6393 | 21.0 | 7896 | 0.6018 | 0.7312 |
|
89 |
+
| 0.5884 | 22.0 | 8272 | 0.5610 | 0.7412 |
|
90 |
+
| 0.5288 | 23.0 | 8648 | 0.5975 | 0.7379 |
|
91 |
+
| 0.5965 | 24.0 | 9024 | 0.6473 | 0.7028 |
|
92 |
+
| 0.58 | 25.0 | 9400 | 0.5765 | 0.7396 |
|
93 |
+
| 0.5899 | 26.0 | 9776 | 0.6331 | 0.7245 |
|
94 |
+
| 0.5507 | 27.0 | 10152 | 0.5858 | 0.7396 |
|
95 |
+
| 0.5002 | 28.0 | 10528 | 0.5674 | 0.7396 |
|
96 |
+
| 0.5229 | 29.0 | 10904 | 0.5711 | 0.7629 |
|
97 |
+
| 0.5096 | 30.0 | 11280 | 0.5570 | 0.7312 |
|
98 |
+
| 0.5311 | 31.0 | 11656 | 0.5601 | 0.7396 |
|
99 |
+
| 0.5742 | 32.0 | 12032 | 0.6065 | 0.7346 |
|
100 |
+
| 0.4585 | 33.0 | 12408 | 0.5565 | 0.7462 |
|
101 |
+
| 0.5294 | 34.0 | 12784 | 0.5555 | 0.7446 |
|
102 |
+
| 0.5171 | 35.0 | 13160 | 0.5723 | 0.7462 |
|
103 |
+
| 0.4899 | 36.0 | 13536 | 0.5748 | 0.7279 |
|
104 |
+
| 0.4582 | 37.0 | 13912 | 0.5789 | 0.7396 |
|
105 |
+
| 0.5149 | 38.0 | 14288 | 0.5146 | 0.7679 |
|
106 |
+
| 0.4968 | 39.0 | 14664 | 0.6020 | 0.7613 |
|
107 |
+
| 0.5645 | 40.0 | 15040 | 0.5459 | 0.7546 |
|
108 |
+
| 0.4741 | 41.0 | 15416 | 0.5562 | 0.7479 |
|
109 |
+
| 0.4423 | 42.0 | 15792 | 0.5487 | 0.7412 |
|
110 |
+
| 0.4186 | 43.0 | 16168 | 0.5329 | 0.7479 |
|
111 |
+
| 0.4763 | 44.0 | 16544 | 0.5469 | 0.7462 |
|
112 |
+
| 0.4775 | 45.0 | 16920 | 0.5538 | 0.7496 |
|
113 |
+
| 0.4053 | 46.0 | 17296 | 0.5298 | 0.7613 |
|
114 |
+
| 0.429 | 47.0 | 17672 | 0.5338 | 0.7663 |
|
115 |
+
| 0.4194 | 48.0 | 18048 | 0.5631 | 0.7496 |
|
116 |
+
| 0.3965 | 49.0 | 18424 | 0.5407 | 0.7629 |
|
117 |
+
| 0.356 | 50.0 | 18800 | 0.5438 | 0.7663 |
|
118 |
+
|
119 |
+
|
120 |
+
### Framework versions
|
121 |
+
|
122 |
+
- Transformers 4.32.1
|
123 |
+
- Pytorch 2.1.0+cu121
|
124 |
+
- Datasets 2.12.0
|
125 |
+
- Tokenizers 0.13.2
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 86735658
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad6f66f75642d18eb63497caad54f67b0e61aec71feccdcdadccaa5441798150
|
3 |
size 86735658
|