--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_small_rms_00001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.905 --- # smids_5x_deit_small_rms_00001_fold5 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9811 - Accuracy: 0.905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2316 | 1.0 | 375 | 0.3828 | 0.845 | | 0.1221 | 2.0 | 750 | 0.3043 | 0.8767 | | 0.1068 | 3.0 | 1125 | 0.3175 | 0.8983 | | 0.0662 | 4.0 | 1500 | 0.4134 | 0.91 | | 0.0386 | 5.0 | 1875 | 0.4725 | 0.9017 | | 0.0006 | 6.0 | 2250 | 0.5991 | 0.8967 | | 0.0164 | 7.0 | 2625 | 0.5133 | 0.9083 | | 0.0227 | 8.0 | 3000 | 0.6114 | 0.905 | | 0.0539 | 9.0 | 3375 | 0.7854 | 0.8933 | | 0.0093 | 10.0 | 3750 | 0.6820 | 0.8983 | | 0.0296 | 11.0 | 4125 | 0.8028 | 0.88 | | 0.0005 | 12.0 | 4500 | 0.7438 | 0.8983 | | 0.0103 | 13.0 | 4875 | 0.8815 | 0.885 | | 0.0 | 14.0 | 5250 | 0.8305 | 0.89 | | 0.0056 | 15.0 | 5625 | 0.8083 | 0.895 | | 0.0 | 16.0 | 6000 | 0.7453 | 0.8917 | | 0.0 | 17.0 | 6375 | 0.7352 | 0.8967 | | 0.0086 | 18.0 | 6750 | 0.8865 | 0.8883 | | 0.0 | 19.0 | 7125 | 0.9006 | 0.8867 | | 0.0007 | 20.0 | 7500 | 0.8620 | 0.8883 | | 0.0001 | 21.0 | 7875 | 0.8055 | 0.8967 | | 0.0167 | 22.0 | 8250 | 0.9436 | 0.8917 | | 0.0 | 23.0 | 8625 | 0.9512 | 0.8883 | | 0.0 | 24.0 | 9000 | 0.8722 | 0.9017 | | 0.014 | 25.0 | 9375 | 0.8674 | 0.9 | | 0.0 | 26.0 | 9750 | 0.8631 | 0.9017 | | 0.0 | 27.0 | 10125 | 0.8607 | 0.9017 | | 0.0054 | 28.0 | 10500 | 0.8949 | 0.9017 | | 0.0 | 29.0 | 10875 | 0.9221 | 0.895 | | 0.0052 | 30.0 | 11250 | 0.8532 | 0.905 | | 0.0 | 31.0 | 11625 | 0.8797 | 0.9017 | | 0.0 | 32.0 | 12000 | 0.8663 | 0.8983 | | 0.0 | 33.0 | 12375 | 0.9338 | 0.8983 | | 0.0 | 34.0 | 12750 | 0.9397 | 0.9033 | | 0.0 | 35.0 | 13125 | 0.9338 | 0.905 | | 0.0 | 36.0 | 13500 | 0.9706 | 0.9 | | 0.0 | 37.0 | 13875 | 0.9486 | 0.9 | | 0.0028 | 38.0 | 14250 | 0.9187 | 0.9033 | | 0.0 | 39.0 | 14625 | 0.9340 | 0.9067 | | 0.0 | 40.0 | 15000 | 0.9523 | 0.905 | | 0.0 | 41.0 | 15375 | 0.9602 | 0.9067 | | 0.0 | 42.0 | 15750 | 0.9532 | 0.905 | | 0.0 | 43.0 | 16125 | 0.9551 | 0.9067 | | 0.0 | 44.0 | 16500 | 0.9611 | 0.905 | | 0.0 | 45.0 | 16875 | 0.9674 | 0.905 | | 0.0 | 46.0 | 17250 | 0.9798 | 0.905 | | 0.0027 | 47.0 | 17625 | 0.9798 | 0.905 | | 0.0 | 48.0 | 18000 | 0.9814 | 0.905 | | 0.0 | 49.0 | 18375 | 0.9829 | 0.905 | | 0.0022 | 50.0 | 18750 | 0.9811 | 0.905 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2