--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_3x_deit_small_sgd_00001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5033333333333333 --- # smids_3x_deit_small_sgd_00001_fold5 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0167 - Accuracy: 0.5033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0819 | 1.0 | 225 | 1.0751 | 0.425 | | 1.0811 | 2.0 | 450 | 1.0723 | 0.4283 | | 1.0651 | 3.0 | 675 | 1.0696 | 0.43 | | 1.0585 | 4.0 | 900 | 1.0669 | 0.4317 | | 1.0233 | 5.0 | 1125 | 1.0644 | 0.4367 | | 1.0543 | 6.0 | 1350 | 1.0620 | 0.4383 | | 1.0645 | 7.0 | 1575 | 1.0597 | 0.4433 | | 1.0639 | 8.0 | 1800 | 1.0574 | 0.445 | | 1.0491 | 9.0 | 2025 | 1.0553 | 0.4467 | | 1.0536 | 10.0 | 2250 | 1.0531 | 0.4483 | | 1.0638 | 11.0 | 2475 | 1.0511 | 0.4533 | | 1.0457 | 12.0 | 2700 | 1.0491 | 0.4583 | | 1.0693 | 13.0 | 2925 | 1.0472 | 0.4583 | | 1.043 | 14.0 | 3150 | 1.0454 | 0.4583 | | 1.0417 | 15.0 | 3375 | 1.0437 | 0.4667 | | 1.0387 | 16.0 | 3600 | 1.0420 | 0.465 | | 1.0423 | 17.0 | 3825 | 1.0404 | 0.4667 | | 1.0457 | 18.0 | 4050 | 1.0388 | 0.465 | | 1.0201 | 19.0 | 4275 | 1.0373 | 0.4683 | | 1.0442 | 20.0 | 4500 | 1.0358 | 0.4683 | | 1.0444 | 21.0 | 4725 | 1.0344 | 0.4717 | | 1.0357 | 22.0 | 4950 | 1.0331 | 0.475 | | 1.0413 | 23.0 | 5175 | 1.0318 | 0.4767 | | 1.0389 | 24.0 | 5400 | 1.0306 | 0.4767 | | 1.0161 | 25.0 | 5625 | 1.0294 | 0.4833 | | 1.021 | 26.0 | 5850 | 1.0283 | 0.485 | | 1.0545 | 27.0 | 6075 | 1.0273 | 0.4867 | | 1.0129 | 28.0 | 6300 | 1.0263 | 0.4883 | | 1.0266 | 29.0 | 6525 | 1.0254 | 0.49 | | 1.0226 | 30.0 | 6750 | 1.0245 | 0.4917 | | 1.0147 | 31.0 | 6975 | 1.0236 | 0.4933 | | 1.0284 | 32.0 | 7200 | 1.0228 | 0.495 | | 1.0418 | 33.0 | 7425 | 1.0221 | 0.495 | | 1.0168 | 34.0 | 7650 | 1.0214 | 0.4967 | | 0.9987 | 35.0 | 7875 | 1.0208 | 0.4967 | | 0.9922 | 36.0 | 8100 | 1.0202 | 0.4983 | | 1.0184 | 37.0 | 8325 | 1.0197 | 0.5 | | 1.0229 | 38.0 | 8550 | 1.0192 | 0.5 | | 0.9957 | 39.0 | 8775 | 1.0187 | 0.5 | | 0.9899 | 40.0 | 9000 | 1.0183 | 0.5 | | 1.0292 | 41.0 | 9225 | 1.0180 | 0.5 | | 1.0309 | 42.0 | 9450 | 1.0177 | 0.5 | | 1.0287 | 43.0 | 9675 | 1.0174 | 0.5 | | 1.0138 | 44.0 | 9900 | 1.0172 | 0.5033 | | 0.9831 | 45.0 | 10125 | 1.0170 | 0.5033 | | 1.0147 | 46.0 | 10350 | 1.0169 | 0.5033 | | 1.015 | 47.0 | 10575 | 1.0168 | 0.5033 | | 1.0202 | 48.0 | 10800 | 1.0167 | 0.5033 | | 1.015 | 49.0 | 11025 | 1.0167 | 0.5033 | | 1.0165 | 50.0 | 11250 | 1.0167 | 0.5033 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2