--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_3x_deit_small_rms_001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7033333333333334 --- # smids_3x_deit_small_rms_001_fold5 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6403 - Accuracy: 0.7033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1309 | 1.0 | 225 | 1.0865 | 0.4083 | | 0.9745 | 2.0 | 450 | 0.8750 | 0.56 | | 0.8495 | 3.0 | 675 | 0.8352 | 0.5333 | | 0.841 | 4.0 | 900 | 0.7966 | 0.555 | | 0.8226 | 5.0 | 1125 | 0.7921 | 0.6 | | 0.853 | 6.0 | 1350 | 0.8095 | 0.5533 | | 0.8653 | 7.0 | 1575 | 0.9709 | 0.5433 | | 0.819 | 8.0 | 1800 | 0.7655 | 0.6383 | | 0.785 | 9.0 | 2025 | 0.7896 | 0.625 | | 0.8631 | 10.0 | 2250 | 0.8879 | 0.525 | | 0.8663 | 11.0 | 2475 | 0.8802 | 0.535 | | 0.7946 | 12.0 | 2700 | 0.8056 | 0.6 | | 0.881 | 13.0 | 2925 | 0.8010 | 0.5733 | | 0.8182 | 14.0 | 3150 | 0.7603 | 0.6483 | | 0.7224 | 15.0 | 3375 | 0.7710 | 0.645 | | 0.7369 | 16.0 | 3600 | 0.7559 | 0.615 | | 0.7647 | 17.0 | 3825 | 0.7835 | 0.5983 | | 0.7746 | 18.0 | 4050 | 0.7447 | 0.645 | | 0.7626 | 19.0 | 4275 | 0.7290 | 0.66 | | 0.7327 | 20.0 | 4500 | 0.7697 | 0.6333 | | 0.7163 | 21.0 | 4725 | 0.7314 | 0.6433 | | 0.8028 | 22.0 | 4950 | 0.7791 | 0.6 | | 0.7667 | 23.0 | 5175 | 0.7694 | 0.64 | | 0.7558 | 24.0 | 5400 | 0.7110 | 0.6567 | | 0.7363 | 25.0 | 5625 | 0.7150 | 0.655 | | 0.7997 | 26.0 | 5850 | 0.7280 | 0.6617 | | 0.7362 | 27.0 | 6075 | 0.7643 | 0.625 | | 0.7462 | 28.0 | 6300 | 0.7414 | 0.6233 | | 0.7001 | 29.0 | 6525 | 0.6980 | 0.665 | | 0.6874 | 30.0 | 6750 | 0.7253 | 0.6283 | | 0.6271 | 31.0 | 6975 | 0.7291 | 0.6433 | | 0.6551 | 32.0 | 7200 | 0.6785 | 0.6567 | | 0.7073 | 33.0 | 7425 | 0.6937 | 0.6717 | | 0.6958 | 34.0 | 7650 | 0.7523 | 0.6367 | | 0.6565 | 35.0 | 7875 | 0.6954 | 0.6533 | | 0.6367 | 36.0 | 8100 | 0.6638 | 0.6817 | | 0.6915 | 37.0 | 8325 | 0.6412 | 0.7083 | | 0.5928 | 38.0 | 8550 | 0.7119 | 0.6533 | | 0.6501 | 39.0 | 8775 | 0.6232 | 0.7133 | | 0.5902 | 40.0 | 9000 | 0.6501 | 0.71 | | 0.6466 | 41.0 | 9225 | 0.6743 | 0.6683 | | 0.7124 | 42.0 | 9450 | 0.7091 | 0.6783 | | 0.6189 | 43.0 | 9675 | 0.6361 | 0.71 | | 0.6514 | 44.0 | 9900 | 0.6443 | 0.7 | | 0.6016 | 45.0 | 10125 | 0.6523 | 0.6883 | | 0.5823 | 46.0 | 10350 | 0.6473 | 0.685 | | 0.6451 | 47.0 | 10575 | 0.6348 | 0.69 | | 0.5906 | 48.0 | 10800 | 0.6387 | 0.695 | | 0.5662 | 49.0 | 11025 | 0.6330 | 0.7017 | | 0.6218 | 50.0 | 11250 | 0.6403 | 0.7033 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2