Commit
·
0725285
1
Parent(s):
18a193d
End of training
Browse files- README.md +125 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/deit-small-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: smids_3x_deit_small_rms_001_fold1
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: test
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.7662771285475793
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# smids_3x_deit_small_rms_001_fold1
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.0295
|
36 |
+
- Accuracy: 0.7663
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.001
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 50
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
68 |
+
| 0.9037 | 1.0 | 226 | 1.1611 | 0.4224 |
|
69 |
+
| 0.8436 | 2.0 | 452 | 0.8419 | 0.5442 |
|
70 |
+
| 0.8202 | 3.0 | 678 | 0.8414 | 0.5359 |
|
71 |
+
| 0.8734 | 4.0 | 904 | 0.8332 | 0.5326 |
|
72 |
+
| 0.8282 | 5.0 | 1130 | 0.7907 | 0.6127 |
|
73 |
+
| 0.8721 | 6.0 | 1356 | 0.8061 | 0.5559 |
|
74 |
+
| 0.7744 | 7.0 | 1582 | 0.7612 | 0.6260 |
|
75 |
+
| 0.7444 | 8.0 | 1808 | 0.8606 | 0.5492 |
|
76 |
+
| 0.7266 | 9.0 | 2034 | 0.7492 | 0.6427 |
|
77 |
+
| 0.7385 | 10.0 | 2260 | 0.7643 | 0.6344 |
|
78 |
+
| 0.6851 | 11.0 | 2486 | 0.7983 | 0.5843 |
|
79 |
+
| 0.6844 | 12.0 | 2712 | 0.7946 | 0.6561 |
|
80 |
+
| 0.6727 | 13.0 | 2938 | 0.8087 | 0.6244 |
|
81 |
+
| 0.6244 | 14.0 | 3164 | 0.6709 | 0.6912 |
|
82 |
+
| 0.6712 | 15.0 | 3390 | 0.6742 | 0.7095 |
|
83 |
+
| 0.6346 | 16.0 | 3616 | 0.6684 | 0.7162 |
|
84 |
+
| 0.5408 | 17.0 | 3842 | 0.6615 | 0.7028 |
|
85 |
+
| 0.63 | 18.0 | 4068 | 0.6480 | 0.7295 |
|
86 |
+
| 0.6263 | 19.0 | 4294 | 0.7205 | 0.6611 |
|
87 |
+
| 0.5327 | 20.0 | 4520 | 0.6519 | 0.7078 |
|
88 |
+
| 0.6622 | 21.0 | 4746 | 0.6350 | 0.7179 |
|
89 |
+
| 0.6299 | 22.0 | 4972 | 0.8817 | 0.6210 |
|
90 |
+
| 0.6304 | 23.0 | 5198 | 0.6476 | 0.7362 |
|
91 |
+
| 0.5526 | 24.0 | 5424 | 0.6677 | 0.7145 |
|
92 |
+
| 0.6295 | 25.0 | 5650 | 0.6118 | 0.7546 |
|
93 |
+
| 0.6308 | 26.0 | 5876 | 0.6212 | 0.7362 |
|
94 |
+
| 0.5383 | 27.0 | 6102 | 0.7015 | 0.7179 |
|
95 |
+
| 0.5618 | 28.0 | 6328 | 0.8218 | 0.6711 |
|
96 |
+
| 0.4879 | 29.0 | 6554 | 0.7043 | 0.6928 |
|
97 |
+
| 0.5827 | 30.0 | 6780 | 0.6552 | 0.7229 |
|
98 |
+
| 0.5364 | 31.0 | 7006 | 0.6340 | 0.7379 |
|
99 |
+
| 0.4905 | 32.0 | 7232 | 0.6047 | 0.7529 |
|
100 |
+
| 0.4492 | 33.0 | 7458 | 0.7039 | 0.7028 |
|
101 |
+
| 0.4914 | 34.0 | 7684 | 0.6660 | 0.7379 |
|
102 |
+
| 0.3519 | 35.0 | 7910 | 0.6494 | 0.7479 |
|
103 |
+
| 0.3791 | 36.0 | 8136 | 0.6497 | 0.7513 |
|
104 |
+
| 0.4111 | 37.0 | 8362 | 0.6075 | 0.7646 |
|
105 |
+
| 0.4433 | 38.0 | 8588 | 0.6728 | 0.7679 |
|
106 |
+
| 0.3357 | 39.0 | 8814 | 0.6576 | 0.7529 |
|
107 |
+
| 0.3901 | 40.0 | 9040 | 0.6972 | 0.7596 |
|
108 |
+
| 0.4094 | 41.0 | 9266 | 0.6481 | 0.7696 |
|
109 |
+
| 0.3576 | 42.0 | 9492 | 0.6871 | 0.7746 |
|
110 |
+
| 0.335 | 43.0 | 9718 | 0.7307 | 0.7846 |
|
111 |
+
| 0.2737 | 44.0 | 9944 | 0.7687 | 0.7746 |
|
112 |
+
| 0.3485 | 45.0 | 10170 | 0.7785 | 0.7780 |
|
113 |
+
| 0.278 | 46.0 | 10396 | 0.8580 | 0.7730 |
|
114 |
+
| 0.2622 | 47.0 | 10622 | 0.8921 | 0.7713 |
|
115 |
+
| 0.2496 | 48.0 | 10848 | 0.9544 | 0.7730 |
|
116 |
+
| 0.1441 | 49.0 | 11074 | 0.9744 | 0.7730 |
|
117 |
+
| 0.1894 | 50.0 | 11300 | 1.0295 | 0.7663 |
|
118 |
+
|
119 |
+
|
120 |
+
### Framework versions
|
121 |
+
|
122 |
+
- Transformers 4.32.1
|
123 |
+
- Pytorch 2.1.0+cu121
|
124 |
+
- Datasets 2.12.0
|
125 |
+
- Tokenizers 0.13.2
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 86735658
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c60218e6f2ba54a70441d8706c0e7e9998bde038df94874126116212bd929c7c
|
3 |
size 86735658
|