--- base_model: airesearch/wangchanberta-base-att-spm-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: wcBERTaAttSpmm-ggTranslate-senticPolarEmotion-bully-f1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/herobye13579/huggingface/runs/1g8tmg7k) [Visualize in Weights & Biases](https://wandb.ai/herobye13579/huggingface/runs/1g8tmg7k) [Visualize in Weights & Biases](https://wandb.ai/herobye13579/huggingface/runs/1g8tmg7k) # wcBERTaAttSpmm-ggTranslate-senticPolarEmotion-bully-f1 This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5229 - Accuracy: 0.7448 - Precision: 0.7291 - Recall: 0.7448 - F1 Score: 0.7303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 0.551 | 1.0 | 120 | 0.5535 | 0.7427 | 0.7285 | 0.7427 | 0.7311 | | 0.5476 | 2.0 | 240 | 0.5530 | 0.7406 | 0.7259 | 0.7406 | 0.7285 | | 0.5352 | 3.0 | 360 | 0.5528 | 0.7354 | 0.7261 | 0.7354 | 0.7294 | | 0.5482 | 4.0 | 480 | 0.5531 | 0.7312 | 0.7278 | 0.7312 | 0.7293 | | 0.5386 | 5.0 | 600 | 0.5547 | 0.7228 | 0.7236 | 0.7228 | 0.7232 | | 0.5391 | 6.0 | 720 | 0.5467 | 0.7427 | 0.7303 | 0.7427 | 0.7335 | | 0.5495 | 7.0 | 840 | 0.5506 | 0.7395 | 0.7305 | 0.7395 | 0.7337 | | 0.5305 | 8.0 | 960 | 0.5444 | 0.7427 | 0.7321 | 0.7427 | 0.7353 | | 0.5183 | 9.0 | 1080 | 0.5326 | 0.7448 | 0.7320 | 0.7448 | 0.7349 | | 0.5065 | 10.0 | 1200 | 0.5218 | 0.7479 | 0.7314 | 0.7479 | 0.7297 | | 0.4753 | 11.0 | 1320 | 0.5207 | 0.7469 | 0.7317 | 0.7469 | 0.7330 | | 0.4731 | 12.0 | 1440 | 0.5233 | 0.7458 | 0.7302 | 0.7458 | 0.7312 | | 0.4828 | 13.0 | 1560 | 0.5243 | 0.7458 | 0.7302 | 0.7458 | 0.7312 | | 0.4662 | 14.0 | 1680 | 0.5229 | 0.7458 | 0.7306 | 0.7458 | 0.7321 | | 0.472 | 15.0 | 1800 | 0.5229 | 0.7448 | 0.7291 | 0.7448 | 0.7303 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1