--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-english-cefr-lexical-evaluation-dt-v5 results: [] --- # distilbert-base-uncased-english-cefr-lexical-evaluation-dt-v5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6329 - Accuracy: 0.6599 - F1: 0.6615 - Precision: 0.6649 - Recall: 0.6599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.1732 | 1.0 | 367 | 1.0065 | 0.6292 | 0.6249 | 0.6360 | 0.6292 | | 0.7751 | 2.0 | 734 | 0.9342 | 0.6649 | 0.6630 | 0.6629 | 0.6649 | | 0.3269 | 3.0 | 1101 | 1.1524 | 0.6483 | 0.6491 | 0.6634 | 0.6483 | | 0.1226 | 4.0 | 1468 | 1.4517 | 0.6558 | 0.6573 | 0.6594 | 0.6558 | | 0.0599 | 5.0 | 1835 | 1.6189 | 0.6697 | 0.6715 | 0.6753 | 0.6697 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3