--- license: mit language: - en tags: - t5 model-index: - name: metro_t0_base results: - task: type: natural-language-inference dataset: type: super_glue name: RTE config: rte split: validation metrics: - type: accuracy value: 61.6245487364621 - task: type: natural-language-inference dataset: type: super_glue name: CB config: cb split: validation metrics: - type: accuracy value: 46.54761904761905 - task: type: natural-language-inference dataset: type: anli name: ANLI R1 split: dev_r1 metrics: - type: accuracy value: 32.12 - task: type: natural-language-inference dataset: type: anli name: ANLI R2 split: dev_r2 metrics: - type: accuracy value: 33.599999999999994 - task: type: natural-language-inference dataset: type: anli name: ANLI R3 split: dev_r3 metrics: - type: accuracy value: 33.833333333333336 - task: type: coreference-resolution dataset: type: super_glue name: WSC config: wsc.fixed split: validation metrics: - type: accuracy value: 56.82692307692308 - task: type: coreference-resolution dataset: type: winogrande name: Winogrande XL config: winogrande_xl split: validation metrics: - type: accuracy value: 50.87608524072613 - task: type: multiple-choice-qa dataset: type: super_glue name: COPA config: copa split: validation metrics: - type: accuracy value: 75.25 - task: type: multiple-choice-qa dataset: type: story_cloze name: StoryCloze 2016 config: '2016' split: validation metrics: - type: accuracy value: 82.44788882950294 - task: type: multiple-choice-qa dataset: type: hellaswag name: HellaSwag split: validation metrics: - type: accuracy value: 39.84266082453695 - task: type: word-sense-disambiguation dataset: type: super_glue name: WiC config: wic split: validation metrics: - type: accuracy value: 62.88401253918495 ---