--- language: - nl license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large V2 results: [] --- # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2887 - Wer: 9.9198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5542 | 0.49 | 30 | 0.2941 | 13.0145 | | 0.2716 | 0.98 | 60 | 0.2636 | 12.2538 | | 0.1438 | 1.48 | 90 | 0.2603 | 11.0868 | | 0.1345 | 1.97 | 120 | 0.2502 | 12.1809 | | 0.0619 | 2.46 | 150 | 0.2587 | 12.3476 | | 0.0552 | 2.95 | 180 | 0.2634 | 10.3366 | | 0.0293 | 3.44 | 210 | 0.2722 | 10.0240 | | 0.0206 | 3.93 | 240 | 0.2670 | 9.7739 | | 0.0108 | 4.43 | 270 | 0.2838 | 9.8364 | | 0.008 | 4.92 | 300 | 0.2887 | 9.9198 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0