File size: 3,271 Bytes
44a2462 ff529ab 44a2462 ff529ab 44a2462 ff529ab 44a2462 ff529ab 44a2462 ff529ab 44a2462 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: google/bert_uncased_L-4_H-256_A-4
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- spearmanr
model-index:
- name: bert_uncased_L-4_H-256_A-4_stsb
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE STSB
type: glue
args: stsb
metrics:
- name: Spearmanr
type: spearmanr
value: 0.8541619713648296
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_uncased_L-4_H-256_A-4_stsb
This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE STSB dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6283
- Pearson: 0.8545
- Spearmanr: 0.8542
- Combined Score: 0.8543
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:|
| 5.5773 | 1.0 | 23 | 2.7412 | 0.3845 | 0.3343 | 0.3594 |
| 2.5793 | 2.0 | 46 | 1.9158 | 0.7727 | 0.7557 | 0.7642 |
| 1.5767 | 3.0 | 69 | 0.9541 | 0.7706 | 0.7473 | 0.7590 |
| 0.9474 | 4.0 | 92 | 0.7628 | 0.8133 | 0.8070 | 0.8101 |
| 0.7258 | 5.0 | 115 | 0.6785 | 0.8383 | 0.8429 | 0.8406 |
| 0.6162 | 6.0 | 138 | 0.6756 | 0.8436 | 0.8439 | 0.8437 |
| 0.5455 | 7.0 | 161 | 0.6391 | 0.8480 | 0.8504 | 0.8492 |
| 0.4912 | 8.0 | 184 | 0.6582 | 0.8461 | 0.8472 | 0.8466 |
| 0.4443 | 9.0 | 207 | 0.6561 | 0.8472 | 0.8482 | 0.8477 |
| 0.3995 | 10.0 | 230 | 0.6429 | 0.8504 | 0.8503 | 0.8503 |
| 0.3689 | 11.0 | 253 | 0.6283 | 0.8545 | 0.8542 | 0.8543 |
| 0.3418 | 12.0 | 276 | 0.6592 | 0.8520 | 0.8520 | 0.8520 |
| 0.3302 | 13.0 | 299 | 0.6507 | 0.8524 | 0.8530 | 0.8527 |
| 0.319 | 14.0 | 322 | 0.6484 | 0.8528 | 0.8526 | 0.8527 |
| 0.2863 | 15.0 | 345 | 0.6397 | 0.8526 | 0.8527 | 0.8526 |
| 0.2774 | 16.0 | 368 | 0.6379 | 0.8559 | 0.8555 | 0.8557 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
|