Upload 2 files
Browse filesCustom classes to use until merge with main
configuration_switch_transformers.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022, Google and HuggingFace Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Switch Transformers model configuration"""
|
16 |
+
from transformers.configuration_utils import PretrainedConfig
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
23 |
+
"google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json",
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
class SwitchTransformersConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`SwitchTransformersModel`]. It is used to
|
30 |
+
instantiate a SwitchTransformers model according to the specified arguments, defining the model architecture.
|
31 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the
|
32 |
+
SwitchTransformers [google/switch-base-8](https://huggingface.co/google/switch-base-8) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
Arguments:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 32128):
|
39 |
+
Vocabulary size of the SwitchTransformers model. Defines the number of different tokens that can be
|
40 |
+
represented by the `inputs_ids` passed when calling [`SwitchTransformersModel`].
|
41 |
+
d_model (`int`, *optional*, defaults to 768):
|
42 |
+
Size of the encoder layers and the pooler layer.
|
43 |
+
d_kv (`int`, *optional*, defaults to 64):
|
44 |
+
Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
|
45 |
+
num_heads`.
|
46 |
+
d_ff (`int`, *optional*, defaults to 2048):
|
47 |
+
Size of the intermediate feed forward layer in each `SwitchTransformersBlock`.
|
48 |
+
expert_capacity (`int`, *optional*, defaults to 64):
|
49 |
+
Number of tokens that can be stored in each expert. If set to 1, the model will behave like a regular
|
50 |
+
Transformer.
|
51 |
+
num_layers (`int`, *optional*, defaults to 12):
|
52 |
+
Number of dense hidden layers in the Transformer encoder layer.
|
53 |
+
num_sparse_encoder_layers (`int`, *optional*, defaults to 3):
|
54 |
+
Number of sparse (MoE) dense hidden layers in the Transformer encoder layer.
|
55 |
+
num_decoder_layers (`int`, *optional*, defaults to 12):
|
56 |
+
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
|
57 |
+
num_sparse_decoder_layers (`int`, *optional*, defaults to 3):
|
58 |
+
Number of sparse (MoE) dense hidden layers in the Transformer decoder layer.
|
59 |
+
num_heads (`int`, *optional*, defaults to 12):
|
60 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
61 |
+
num_experts (`int`, *optional*, defaults to 8):
|
62 |
+
Number of experts for each SwitchTransformer layer.
|
63 |
+
router_bias (`bool`, *optional*, defaults to `False`):
|
64 |
+
Whether to add a bias to the router.
|
65 |
+
router_jitter_noise (`float`, *optional*, defaults to 0.01):
|
66 |
+
Amount of noise to add to the router.
|
67 |
+
router_dtype (`str`, *optional*, default to `"float32"`):
|
68 |
+
The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the
|
69 |
+
*selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961).
|
70 |
+
router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`):
|
71 |
+
Whether to ignore padding tokens when routing.
|
72 |
+
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
|
73 |
+
The number of buckets to use for each attention layer.
|
74 |
+
relative_attention_max_distance (`int`, *optional*, defaults to 128):
|
75 |
+
The maximum distance of the longer sequences for the bucket separation.
|
76 |
+
dropout_rate (`float`, *optional*, defaults to 0.1):
|
77 |
+
The ratio for all dropout layers.
|
78 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
79 |
+
The dropout ratio for classifier.
|
80 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
81 |
+
The epsilon used by the layer normalization layers.
|
82 |
+
router_z_loss_coef (`float`, *optional*, defaults to 0.001):
|
83 |
+
The z loss factor for the total loss.
|
84 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
85 |
+
The aux loss factor for the total loss.
|
86 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
87 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
88 |
+
testing).
|
89 |
+
dense_act_fn (`string`, *optional*, defaults to `"relu"`):
|
90 |
+
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. SwitchTransformersv1.1
|
91 |
+
uses the `"gated-gelu"` feed forward projection. Original SwitchTransformers uses `"relu"`.
|
92 |
+
add_router_probs (`bool`, *optional*, defaults to `False`):
|
93 |
+
Whether to output router probabilities to compute router auxiliary loss.
|
94 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
95 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
96 |
+
"""
|
97 |
+
|
98 |
+
model_type = "switch_transformers"
|
99 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
100 |
+
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
|
101 |
+
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
vocab_size=32128,
|
105 |
+
d_model=768,
|
106 |
+
d_kv=64,
|
107 |
+
d_ff=2048,
|
108 |
+
expert_capacity=64,
|
109 |
+
num_layers=12,
|
110 |
+
num_sparse_encoder_layers=3,
|
111 |
+
num_decoder_layers=12,
|
112 |
+
num_sparse_decoder_layers=3,
|
113 |
+
num_heads=12,
|
114 |
+
num_experts=8,
|
115 |
+
router_bias=False,
|
116 |
+
router_jitter_noise=0.01,
|
117 |
+
router_dtype="float32",
|
118 |
+
router_ignore_padding_tokens=False,
|
119 |
+
relative_attention_num_buckets=32,
|
120 |
+
relative_attention_max_distance=128,
|
121 |
+
dropout_rate=0.1,
|
122 |
+
classifier_dropout=0.0,
|
123 |
+
layer_norm_epsilon=1e-6,
|
124 |
+
router_z_loss_coef=0.001,
|
125 |
+
router_aux_loss_coef=0.001,
|
126 |
+
initializer_factor=1.0,
|
127 |
+
dense_act_fn="relu",
|
128 |
+
is_encoder_decoder=True,
|
129 |
+
add_router_probs=False,
|
130 |
+
use_cache=True,
|
131 |
+
pad_token_id=0,
|
132 |
+
eos_token_id=1,
|
133 |
+
**kwargs,
|
134 |
+
):
|
135 |
+
self.vocab_size = vocab_size
|
136 |
+
self.d_model = d_model
|
137 |
+
self.d_kv = d_kv
|
138 |
+
self.d_ff = d_ff
|
139 |
+
|
140 |
+
self.num_sparse_encoder_layers = num_sparse_encoder_layers
|
141 |
+
|
142 |
+
self.num_layers = num_layers
|
143 |
+
self.num_decoder_layers = (
|
144 |
+
num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
145 |
+
) # default = symmetry
|
146 |
+
self.num_sparse_decoder_layers = num_sparse_decoder_layers
|
147 |
+
|
148 |
+
# This tells us, each how many encoder layer we'll have to set a sparse layer.
|
149 |
+
if self.num_sparse_encoder_layers > 0:
|
150 |
+
self.encoder_sparse_step = self.num_layers // self.num_sparse_encoder_layers
|
151 |
+
else:
|
152 |
+
self.encoder_sparse_step = self.num_layers # HACK: this will create 0 sparse layers
|
153 |
+
|
154 |
+
# This tells us, each how many encoder layer we'll have to set a sparse layer.
|
155 |
+
if self.num_sparse_decoder_layers > 0:
|
156 |
+
self.decoder_sparse_step = self.num_decoder_layers // self.num_sparse_decoder_layers
|
157 |
+
else:
|
158 |
+
self.decoder_sparse_step = self.num_decoder_layers # HACK: this will create 0 sparse layers
|
159 |
+
|
160 |
+
self.num_heads = num_heads
|
161 |
+
self.num_experts = num_experts
|
162 |
+
self.expert_capacity = expert_capacity
|
163 |
+
self.router_bias = router_bias
|
164 |
+
self.router_jitter_noise = router_jitter_noise
|
165 |
+
if router_dtype not in ["float32", "float16", "bfloat16"]:
|
166 |
+
raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}")
|
167 |
+
self.router_dtype = router_dtype
|
168 |
+
|
169 |
+
self.router_ignore_padding_tokens = router_ignore_padding_tokens
|
170 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
171 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
172 |
+
|
173 |
+
self.dropout_rate = dropout_rate
|
174 |
+
if classifier_dropout is not None:
|
175 |
+
self.classifier_dropout = classifier_dropout
|
176 |
+
else:
|
177 |
+
self.classifier_dropout = 0.0
|
178 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
179 |
+
self.initializer_factor = initializer_factor
|
180 |
+
self.use_cache = use_cache
|
181 |
+
self.add_router_probs = add_router_probs
|
182 |
+
|
183 |
+
self.router_z_loss_coef = router_z_loss_coef
|
184 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
185 |
+
self.dense_act_fn = dense_act_fn
|
186 |
+
|
187 |
+
super().__init__(
|
188 |
+
pad_token_id=pad_token_id,
|
189 |
+
eos_token_id=eos_token_id,
|
190 |
+
is_encoder_decoder=is_encoder_decoder,
|
191 |
+
**kwargs,
|
192 |
+
)
|
modeling_switch_transformers.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|