gkim commited on
Commit
05af09d
·
1 Parent(s): 854c2b5

Upload model for Lunar Lander (Unit 1 of deepRL course)

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.82 +/- 20.05
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9de545310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9de5453a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9de545430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9de5454c0>", "_build": "<function ActorCriticPolicy._build at 0x7fe9de545550>", "forward": "<function ActorCriticPolicy.forward at 0x7fe9de5455e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe9de545670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9de545700>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe9de545790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9de545820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9de5458b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9de545940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe9de541870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678167859178648562, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO2uDxTKZo/8zd7PCBvAL+KwwI9zdDZPQAAAAAAAAAAzRTXPCUw9D4ahBS9xMSfvpqBszxK+728AAAAAAAAAACaLfa7AqKxP7AVgL3elIa+BsIWvbb61zwAAAAAAAAAAGb+WLxxjGu7ulDeO+cl8DymZrU8esXJvQAAgD8AAIA/M099vddvHrum+Qu9Z7EqPAkLWjyuTxe9AACAPwAAgD+aTeu8gKacP6K3NrwdPO++p6GSvLgBY7wAAAAAAAAAADomZL6PTYo/LMWKvjkh2b4cEqS+tvWhuwAAAAAAAAAAk5M/vtSOrj6M9ho+g8xuvhe3Xrxkq5w8AAAAAAAAAAAla6G+VGKIP4NXb76yrMu+ebfqvn4iZj0AAAAAAAAAAHOxRz4JAsA+QRCjvn0Oub7qcL89DyYtvgAAAAAAAAAAzRwoO2zz37uy+9y8r28FPFZkKz1NYOu8AACAPwAAgD/Ngze9Q7B8P5AnyTwzada+lEZSvdp+ezwAAAAAAAAAANr8tj05+Z4+WC7VvYlnw77w7M49tQaIvQAAAAAAAAAAOhwUvly6Bj8zQQs+kf/LvkbblLsW/QE6AAAAAAAAAAAAG1G9RET6PXK/HD4p6lW+Nz27PGtN3D0AAAAAAAAAAGbzbT72o7E+Hp6Xvoodlb5eRQU9+EIZvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVSRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/N8RFarlcECUhpRSlIwBbJRNJQGMAXSUR0CWltVxCIDYdX2UKGgGaAloD0MIW3nJ/6QjcUCUhpRSlGgVTQkBaBZHQJaW4e3hGYt1fZQoaAZoCWgPQwgyVwbVBkc7QJSGlFKUaBVLvmgWR0CWl1knkT6BdX2UKGgGaAloD0MIllrvN9rwcUCUhpRSlGgVS9hoFkdAlpfeclPac3V9lChoBmgJaA9DCD7shQJ2VXNAlIaUUpRoFUvVaBZHQJaX7FwT/Q11fZQoaAZoCWgPQwgF+kSe5KlxQJSGlFKUaBVNCQFoFkdAlpjKsIVuaXV9lChoBmgJaA9DCCCb5Ef8mnFAlIaUUpRoFUvtaBZHQJaY6TFERap1fZQoaAZoCWgPQwiZ02UxMQ1xQJSGlFKUaBVL+2gWR0CWmPInBtUGdX2UKGgGaAloD0MIRkPGo5Q0cUCUhpRSlGgVTRkBaBZHQJaZg+aBqbl1fZQoaAZoCWgPQwjBxvXv+uNwQJSGlFKUaBVNWwFoFkdAlpoiiqQzUXV9lChoBmgJaA9DCGu28pL/NlBAlIaUUpRoFUu3aBZHQJaa1HLA57x1fZQoaAZoCWgPQwg1XU90XcJvQJSGlFKUaBVNAQFoFkdAlpuNNvfj0nV9lChoBmgJaA9DCGUaTS7GtG1AlIaUUpRoFUvraBZHQJab2F49ovl1fZQoaAZoCWgPQwj6RQn6y/9yQJSGlFKUaBVNAAFoFkdAlpwV6/qPfnV9lChoBmgJaA9DCK4q+64IQlBAlIaUUpRoFUu/aBZHQJacKBBiTdN1fZQoaAZoCWgPQwg0MPKy5gBxQJSGlFKUaBVNHQFoFkdAlpyvtUn5SHV9lChoBmgJaA9DCLNCke7nwHBAlIaUUpRoFUvzaBZHQJac4Ft8/lh1fZQoaAZoCWgPQwi0yeGTDmNyQJSGlFKUaBVNJwFoFkdAlp1T0QK8c3V9lChoBmgJaA9DCBpSRfEqGnNAlIaUUpRoFUvnaBZHQJadt/Tb3491fZQoaAZoCWgPQwig+Zy73ZRzQJSGlFKUaBVNHgFoFkdAlp3e5avA5HV9lChoBmgJaA9DCMwqbAY4+W9AlIaUUpRoFUvpaBZHQJaescwQDmt1fZQoaAZoCWgPQwiKIM7DSb5yQJSGlFKUaBVNGQFoFkdAlp7Vd9lVcXV9lChoBmgJaA9DCOntz0XDNm5AlIaUUpRoFUv5aBZHQJafAkTpPh11fZQoaAZoCWgPQwhmEvWCz5tyQJSGlFKUaBVNAgFoFkdAlp9YgieNDXV9lChoBmgJaA9DCAJJ2LeTr3FAlIaUUpRoFUvkaBZHQJaghV7x/d91fZQoaAZoCWgPQwhkAn6NpFRxQJSGlFKUaBVNDAFoFkdAlqDkAPuognV9lChoBmgJaA9DCJG3XP0YK3BAlIaUUpRoFUvoaBZHQJah92TxG2F1fZQoaAZoCWgPQwjcD3hggMFwQJSGlFKUaBVNUQFoFkdAlqIn3g1m8XV9lChoBmgJaA9DCHmxMESOq3BAlIaUUpRoFU0EAWgWR0CWoom6oVEedX2UKGgGaAloD0MImlshrEY1cUCUhpRSlGgVTRIBaBZHQJaipArxy4p1fZQoaAZoCWgPQwjA6V28n3JxQJSGlFKUaBVL+GgWR0CWo486FM7EdX2UKGgGaAloD0MI4xbzc8MHcUCUhpRSlGgVTQEBaBZHQJajm4pc5bR1fZQoaAZoCWgPQwjJWdjTDmZwQJSGlFKUaBVL6WgWR0CWo7Fpwjt5dX2UKGgGaAloD0MI3IDPDyNBcECUhpRSlGgVTRwBaBZHQJajzzZpSJl1fZQoaAZoCWgPQwiPUDOkClRvQJSGlFKUaBVL7mgWR0CWpGlgMMJAdX2UKGgGaAloD0MIh4bFqCs5cUCUhpRSlGgVS+xoFkdAlqSMuez2OHV9lChoBmgJaA9DCFouG51zdHBAlIaUUpRoFUvuaBZHQJa+irELpiZ1fZQoaAZoCWgPQwh5ILJI01dyQJSGlFKUaBVL52gWR0CWvrqxTsIFdX2UKGgGaAloD0MIuCIxQU0lcUCUhpRSlGgVTRIBaBZHQJa/H7pFCsx1fZQoaAZoCWgPQwhV3SObK8FxQJSGlFKUaBVNFwFoFkdAlr9fek56t3V9lChoBmgJaA9DCFQ7w9SWhEVAlIaUUpRoFUuvaBZHQJa/3Rc/t6Z1fZQoaAZoCWgPQwjQ8GYNnjFxQJSGlFKUaBVNDgFoFkdAlsFNMXaakXV9lChoBmgJaA9DCJv/Vx25hnBAlIaUUpRoFUvsaBZHQJbBY7Pppvh1fZQoaAZoCWgPQwiRRC+j2BNuQJSGlFKUaBVL6mgWR0CWwfUkOZssdX2UKGgGaAloD0MIoPzdOypfckCUhpRSlGgVS99oFkdAlsKO18b70nV9lChoBmgJaA9DCDJyFvY0eW9AlIaUUpRoFUv2aBZHQJbDKJTER8N1fZQoaAZoCWgPQwiyDkdXaZxxQJSGlFKUaBVNXgFoFkdAlsM8yJsO5XV9lChoBmgJaA9DCPxwkBAl+nJAlIaUUpRoFU0QAWgWR0CWw81BMSK4dX2UKGgGaAloD0MISg1tADYYbkCUhpRSlGgVTTsBaBZHQJbEMeA/cFh1fZQoaAZoCWgPQwhRhT/DG95vQJSGlFKUaBVNIAFoFkdAlsRGgam4zHV9lChoBmgJaA9DCEloy7kUoXBAlIaUUpRoFU0RAWgWR0CWxHi5NGmUdX2UKGgGaAloD0MIOs5twv1wcUCUhpRSlGgVTQ4BaBZHQJbEghje9Bd1fZQoaAZoCWgPQwjTTzi7NVxyQJSGlFKUaBVL7mgWR0CWxOJcPe54dX2UKGgGaAloD0MI6kFBKVqXbECUhpRSlGgVS/1oFkdAlsVmHck+o3V9lChoBmgJaA9DCElm9Q73yXBAlIaUUpRoFUv1aBZHQJbFlUdaMaV1fZQoaAZoCWgPQwjPglDeB3BwQJSGlFKUaBVL72gWR0CWxa7L+xW1dX2UKGgGaAloD0MIou9uZcnHckCUhpRSlGgVS+doFkdAlsXrQb+98XV9lChoBmgJaA9DCJ8cBYiCzm5AlIaUUpRoFUvvaBZHQJbHWW/rSmZ1fZQoaAZoCWgPQwiFQ2/xMB9yQJSGlFKUaBVNEgFoFkdAlsgpmukk8nV9lChoBmgJaA9DCCZXsfhNQ29AlIaUUpRoFUv3aBZHQJbIpHy3CsR1fZQoaAZoCWgPQwi9UpYhjmRzQJSGlFKUaBVL5GgWR0CWyL59mYjTdX2UKGgGaAloD0MIHqhTHl21a0CUhpRSlGgVTRIBaBZHQJbIz3fyf+V1fZQoaAZoCWgPQwiUh4Va05pyQJSGlFKUaBVL8WgWR0CWyP7u2JBPdX2UKGgGaAloD0MIeedQhupockCUhpRSlGgVS+FoFkdAlsmanNxEOXV9lChoBmgJaA9DCHkkXp7OjHBAlIaUUpRoFUv2aBZHQJbJtQSBbwB1fZQoaAZoCWgPQwiqYFRSZytxQJSGlFKUaBVL7mgWR0CWyiaMaS9vdX2UKGgGaAloD0MI5PVgUrwCcECUhpRSlGgVS/loFkdAlsp2RNh3JXV9lChoBmgJaA9DCDfiyW5me3BAlIaUUpRoFU0IAWgWR0CWyoRzijtYdX2UKGgGaAloD0MIck7soX15cECUhpRSlGgVTRABaBZHQJbLiBJ7LMd1fZQoaAZoCWgPQwiDo+TVOSBwQJSGlFKUaBVNBQFoFkdAlsviofjjrHV9lChoBmgJaA9DCOCcEaU9znFAlIaUUpRoFUvwaBZHQJbMBHNHH3l1fZQoaAZoCWgPQwjlYDYBBmxvQJSGlFKUaBVNDAFoFkdAlsx327FsHnV9lChoBmgJaA9DCBzTE5b48HBAlIaUUpRoFU0ZAWgWR0CWzKpXIU8FdX2UKGgGaAloD0MIWJBmLJqcTkCUhpRSlGgVS9BoFkdAls4YbfgrH3V9lChoBmgJaA9DCMsvgzEiJnBAlIaUUpRoFUv5aBZHQJbOqOq//Nt1fZQoaAZoCWgPQwjLgLOU7ANxQJSGlFKUaBVL72gWR0CWztqRlpXZdX2UKGgGaAloD0MI2LYoswGXcECUhpRSlGgVTSkBaBZHQJbPEsg+yJN1fZQoaAZoCWgPQwhYA5SGGmFxQJSGlFKUaBVL8mgWR0CWz0iVjZtfdX2UKGgGaAloD0MI7zob8k+3cUCUhpRSlGgVS95oFkdAls953C9AX3V9lChoBmgJaA9DCCcz3lb6m25AlIaUUpRoFU0TAWgWR0CWz+fZmI0qdX2UKGgGaAloD0MIc4V3uQjRb0CUhpRSlGgVS/hoFkdAltAMs6JZXHV9lChoBmgJaA9DCCkjLgCNq29AlIaUUpRoFUvqaBZHQJbQOkSElE91fZQoaAZoCWgPQwjBqnr5nUlvQJSGlFKUaBVL6WgWR0CW0HqPwNLEdX2UKGgGaAloD0MIrmGGxpN8bkCUhpRSlGgVTQkBaBZHQJbRRTgl4Tt1fZQoaAZoCWgPQwgAkBMmjGVsQJSGlFKUaBVNGgFoFkdAltKnyNGViXV9lChoBmgJaA9DCOmedY2Wjm9AlIaUUpRoFU0TAWgWR0CW0sfra/RFdX2UKGgGaAloD0MIOZuOAG5DckCUhpRSlGgVS/poFkdAltLescQyynV9lChoBmgJaA9DCAgFpWilXnFAlIaUUpRoFU0eAWgWR0CW0yG1QZXNdX2UKGgGaAloD0MIox8Np4xmc0CUhpRSlGgVTSABaBZHQJbTkrWiDdx1fZQoaAZoCWgPQwgIV0ChnkxuQJSGlFKUaBVL4WgWR0CW1F90Rvm6dX2UKGgGaAloD0MIk3AhjyCTckCUhpRSlGgVS+doFkdAltTIZ62OQ3V9lChoBmgJaA9DCJ4GDJK+unJAlIaUUpRoFUv4aBZHQJbU0PBi1At1fZQoaAZoCWgPQwiw6NZrehVzQJSGlFKUaBVNFAFoFkdAltUFlCkXUHV9lChoBmgJaA9DCEkRGVZxgG5AlIaUUpRoFUvnaBZHQJbVAZDRc/t1fZQoaAZoCWgPQwjXMa64uAlvQJSGlFKUaBVNAAFoFkdAltXNY0VJtnV9lChoBmgJaA9DCJzEILByZW9AlIaUUpRoFUv2aBZHQJbWHsRg7YF1fZQoaAZoCWgPQwgRNjy9Uk1wQJSGlFKUaBVL/2gWR0CW1jmtyPuHdX2UKGgGaAloD0MIZavLKQHbcUCUhpRSlGgVS/poFkdAltZkfHPu5XV9lChoBmgJaA9DCKd38X5cfHBAlIaUUpRoFUvfaBZHQJbWzUQTVUd1fZQoaAZoCWgPQwhYdVYL7DZxQJSGlFKUaBVNCgFoFkdAltcDl5nlGXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
first_attempt.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff888ae5a7108066f24a622d0ef928d692acb3d77cd6076fedcc2fec5dde2eec
3
+ size 147352
first_attempt/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
first_attempt/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9de545310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9de5453a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9de545430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9de5454c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe9de545550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe9de5455e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe9de545670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9de545700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe9de545790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9de545820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9de5458b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9de545940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe9de541870>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678167859178648562,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO2uDxTKZo/8zd7PCBvAL+KwwI9zdDZPQAAAAAAAAAAzRTXPCUw9D4ahBS9xMSfvpqBszxK+728AAAAAAAAAACaLfa7AqKxP7AVgL3elIa+BsIWvbb61zwAAAAAAAAAAGb+WLxxjGu7ulDeO+cl8DymZrU8esXJvQAAgD8AAIA/M099vddvHrum+Qu9Z7EqPAkLWjyuTxe9AACAPwAAgD+aTeu8gKacP6K3NrwdPO++p6GSvLgBY7wAAAAAAAAAADomZL6PTYo/LMWKvjkh2b4cEqS+tvWhuwAAAAAAAAAAk5M/vtSOrj6M9ho+g8xuvhe3Xrxkq5w8AAAAAAAAAAAla6G+VGKIP4NXb76yrMu+ebfqvn4iZj0AAAAAAAAAAHOxRz4JAsA+QRCjvn0Oub7qcL89DyYtvgAAAAAAAAAAzRwoO2zz37uy+9y8r28FPFZkKz1NYOu8AACAPwAAgD/Ngze9Q7B8P5AnyTwzada+lEZSvdp+ezwAAAAAAAAAANr8tj05+Z4+WC7VvYlnw77w7M49tQaIvQAAAAAAAAAAOhwUvly6Bj8zQQs+kf/LvkbblLsW/QE6AAAAAAAAAAAAG1G9RET6PXK/HD4p6lW+Nz27PGtN3D0AAAAAAAAAAGbzbT72o7E+Hp6Xvoodlb5eRQU9+EIZvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVSRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/N8RFarlcECUhpRSlIwBbJRNJQGMAXSUR0CWltVxCIDYdX2UKGgGaAloD0MIW3nJ/6QjcUCUhpRSlGgVTQkBaBZHQJaW4e3hGYt1fZQoaAZoCWgPQwgyVwbVBkc7QJSGlFKUaBVLvmgWR0CWl1knkT6BdX2UKGgGaAloD0MIllrvN9rwcUCUhpRSlGgVS9hoFkdAlpfeclPac3V9lChoBmgJaA9DCD7shQJ2VXNAlIaUUpRoFUvVaBZHQJaX7FwT/Q11fZQoaAZoCWgPQwgF+kSe5KlxQJSGlFKUaBVNCQFoFkdAlpjKsIVuaXV9lChoBmgJaA9DCCCb5Ef8mnFAlIaUUpRoFUvtaBZHQJaY6TFERap1fZQoaAZoCWgPQwiZ02UxMQ1xQJSGlFKUaBVL+2gWR0CWmPInBtUGdX2UKGgGaAloD0MIRkPGo5Q0cUCUhpRSlGgVTRkBaBZHQJaZg+aBqbl1fZQoaAZoCWgPQwjBxvXv+uNwQJSGlFKUaBVNWwFoFkdAlpoiiqQzUXV9lChoBmgJaA9DCGu28pL/NlBAlIaUUpRoFUu3aBZHQJaa1HLA57x1fZQoaAZoCWgPQwg1XU90XcJvQJSGlFKUaBVNAQFoFkdAlpuNNvfj0nV9lChoBmgJaA9DCGUaTS7GtG1AlIaUUpRoFUvraBZHQJab2F49ovl1fZQoaAZoCWgPQwj6RQn6y/9yQJSGlFKUaBVNAAFoFkdAlpwV6/qPfnV9lChoBmgJaA9DCK4q+64IQlBAlIaUUpRoFUu/aBZHQJacKBBiTdN1fZQoaAZoCWgPQwg0MPKy5gBxQJSGlFKUaBVNHQFoFkdAlpyvtUn5SHV9lChoBmgJaA9DCLNCke7nwHBAlIaUUpRoFUvzaBZHQJac4Ft8/lh1fZQoaAZoCWgPQwi0yeGTDmNyQJSGlFKUaBVNJwFoFkdAlp1T0QK8c3V9lChoBmgJaA9DCBpSRfEqGnNAlIaUUpRoFUvnaBZHQJadt/Tb3491fZQoaAZoCWgPQwig+Zy73ZRzQJSGlFKUaBVNHgFoFkdAlp3e5avA5HV9lChoBmgJaA9DCMwqbAY4+W9AlIaUUpRoFUvpaBZHQJaescwQDmt1fZQoaAZoCWgPQwiKIM7DSb5yQJSGlFKUaBVNGQFoFkdAlp7Vd9lVcXV9lChoBmgJaA9DCOntz0XDNm5AlIaUUpRoFUv5aBZHQJafAkTpPh11fZQoaAZoCWgPQwhmEvWCz5tyQJSGlFKUaBVNAgFoFkdAlp9YgieNDXV9lChoBmgJaA9DCAJJ2LeTr3FAlIaUUpRoFUvkaBZHQJaghV7x/d91fZQoaAZoCWgPQwhkAn6NpFRxQJSGlFKUaBVNDAFoFkdAlqDkAPuognV9lChoBmgJaA9DCJG3XP0YK3BAlIaUUpRoFUvoaBZHQJah92TxG2F1fZQoaAZoCWgPQwjcD3hggMFwQJSGlFKUaBVNUQFoFkdAlqIn3g1m8XV9lChoBmgJaA9DCHmxMESOq3BAlIaUUpRoFU0EAWgWR0CWoom6oVEedX2UKGgGaAloD0MImlshrEY1cUCUhpRSlGgVTRIBaBZHQJaipArxy4p1fZQoaAZoCWgPQwjA6V28n3JxQJSGlFKUaBVL+GgWR0CWo486FM7EdX2UKGgGaAloD0MI4xbzc8MHcUCUhpRSlGgVTQEBaBZHQJajm4pc5bR1fZQoaAZoCWgPQwjJWdjTDmZwQJSGlFKUaBVL6WgWR0CWo7Fpwjt5dX2UKGgGaAloD0MI3IDPDyNBcECUhpRSlGgVTRwBaBZHQJajzzZpSJl1fZQoaAZoCWgPQwiPUDOkClRvQJSGlFKUaBVL7mgWR0CWpGlgMMJAdX2UKGgGaAloD0MIh4bFqCs5cUCUhpRSlGgVS+xoFkdAlqSMuez2OHV9lChoBmgJaA9DCFouG51zdHBAlIaUUpRoFUvuaBZHQJa+irELpiZ1fZQoaAZoCWgPQwh5ILJI01dyQJSGlFKUaBVL52gWR0CWvrqxTsIFdX2UKGgGaAloD0MIuCIxQU0lcUCUhpRSlGgVTRIBaBZHQJa/H7pFCsx1fZQoaAZoCWgPQwhV3SObK8FxQJSGlFKUaBVNFwFoFkdAlr9fek56t3V9lChoBmgJaA9DCFQ7w9SWhEVAlIaUUpRoFUuvaBZHQJa/3Rc/t6Z1fZQoaAZoCWgPQwjQ8GYNnjFxQJSGlFKUaBVNDgFoFkdAlsFNMXaakXV9lChoBmgJaA9DCJv/Vx25hnBAlIaUUpRoFUvsaBZHQJbBY7Pppvh1fZQoaAZoCWgPQwiRRC+j2BNuQJSGlFKUaBVL6mgWR0CWwfUkOZssdX2UKGgGaAloD0MIoPzdOypfckCUhpRSlGgVS99oFkdAlsKO18b70nV9lChoBmgJaA9DCDJyFvY0eW9AlIaUUpRoFUv2aBZHQJbDKJTER8N1fZQoaAZoCWgPQwiyDkdXaZxxQJSGlFKUaBVNXgFoFkdAlsM8yJsO5XV9lChoBmgJaA9DCPxwkBAl+nJAlIaUUpRoFU0QAWgWR0CWw81BMSK4dX2UKGgGaAloD0MISg1tADYYbkCUhpRSlGgVTTsBaBZHQJbEMeA/cFh1fZQoaAZoCWgPQwhRhT/DG95vQJSGlFKUaBVNIAFoFkdAlsRGgam4zHV9lChoBmgJaA9DCEloy7kUoXBAlIaUUpRoFU0RAWgWR0CWxHi5NGmUdX2UKGgGaAloD0MIOs5twv1wcUCUhpRSlGgVTQ4BaBZHQJbEghje9Bd1fZQoaAZoCWgPQwjTTzi7NVxyQJSGlFKUaBVL7mgWR0CWxOJcPe54dX2UKGgGaAloD0MI6kFBKVqXbECUhpRSlGgVS/1oFkdAlsVmHck+o3V9lChoBmgJaA9DCElm9Q73yXBAlIaUUpRoFUv1aBZHQJbFlUdaMaV1fZQoaAZoCWgPQwjPglDeB3BwQJSGlFKUaBVL72gWR0CWxa7L+xW1dX2UKGgGaAloD0MIou9uZcnHckCUhpRSlGgVS+doFkdAlsXrQb+98XV9lChoBmgJaA9DCJ8cBYiCzm5AlIaUUpRoFUvvaBZHQJbHWW/rSmZ1fZQoaAZoCWgPQwiFQ2/xMB9yQJSGlFKUaBVNEgFoFkdAlsgpmukk8nV9lChoBmgJaA9DCCZXsfhNQ29AlIaUUpRoFUv3aBZHQJbIpHy3CsR1fZQoaAZoCWgPQwi9UpYhjmRzQJSGlFKUaBVL5GgWR0CWyL59mYjTdX2UKGgGaAloD0MIHqhTHl21a0CUhpRSlGgVTRIBaBZHQJbIz3fyf+V1fZQoaAZoCWgPQwiUh4Va05pyQJSGlFKUaBVL8WgWR0CWyP7u2JBPdX2UKGgGaAloD0MIeedQhupockCUhpRSlGgVS+FoFkdAlsmanNxEOXV9lChoBmgJaA9DCHkkXp7OjHBAlIaUUpRoFUv2aBZHQJbJtQSBbwB1fZQoaAZoCWgPQwiqYFRSZytxQJSGlFKUaBVL7mgWR0CWyiaMaS9vdX2UKGgGaAloD0MI5PVgUrwCcECUhpRSlGgVS/loFkdAlsp2RNh3JXV9lChoBmgJaA9DCDfiyW5me3BAlIaUUpRoFU0IAWgWR0CWyoRzijtYdX2UKGgGaAloD0MIck7soX15cECUhpRSlGgVTRABaBZHQJbLiBJ7LMd1fZQoaAZoCWgPQwiDo+TVOSBwQJSGlFKUaBVNBQFoFkdAlsviofjjrHV9lChoBmgJaA9DCOCcEaU9znFAlIaUUpRoFUvwaBZHQJbMBHNHH3l1fZQoaAZoCWgPQwjlYDYBBmxvQJSGlFKUaBVNDAFoFkdAlsx327FsHnV9lChoBmgJaA9DCBzTE5b48HBAlIaUUpRoFU0ZAWgWR0CWzKpXIU8FdX2UKGgGaAloD0MIWJBmLJqcTkCUhpRSlGgVS9BoFkdAls4YbfgrH3V9lChoBmgJaA9DCMsvgzEiJnBAlIaUUpRoFUv5aBZHQJbOqOq//Nt1fZQoaAZoCWgPQwjLgLOU7ANxQJSGlFKUaBVL72gWR0CWztqRlpXZdX2UKGgGaAloD0MI2LYoswGXcECUhpRSlGgVTSkBaBZHQJbPEsg+yJN1fZQoaAZoCWgPQwhYA5SGGmFxQJSGlFKUaBVL8mgWR0CWz0iVjZtfdX2UKGgGaAloD0MI7zob8k+3cUCUhpRSlGgVS95oFkdAls953C9AX3V9lChoBmgJaA9DCCcz3lb6m25AlIaUUpRoFU0TAWgWR0CWz+fZmI0qdX2UKGgGaAloD0MIc4V3uQjRb0CUhpRSlGgVS/hoFkdAltAMs6JZXHV9lChoBmgJaA9DCCkjLgCNq29AlIaUUpRoFUvqaBZHQJbQOkSElE91fZQoaAZoCWgPQwjBqnr5nUlvQJSGlFKUaBVL6WgWR0CW0HqPwNLEdX2UKGgGaAloD0MIrmGGxpN8bkCUhpRSlGgVTQkBaBZHQJbRRTgl4Tt1fZQoaAZoCWgPQwgAkBMmjGVsQJSGlFKUaBVNGgFoFkdAltKnyNGViXV9lChoBmgJaA9DCOmedY2Wjm9AlIaUUpRoFU0TAWgWR0CW0sfra/RFdX2UKGgGaAloD0MIOZuOAG5DckCUhpRSlGgVS/poFkdAltLescQyynV9lChoBmgJaA9DCAgFpWilXnFAlIaUUpRoFU0eAWgWR0CW0yG1QZXNdX2UKGgGaAloD0MIox8Np4xmc0CUhpRSlGgVTSABaBZHQJbTkrWiDdx1fZQoaAZoCWgPQwgIV0ChnkxuQJSGlFKUaBVL4WgWR0CW1F90Rvm6dX2UKGgGaAloD0MIk3AhjyCTckCUhpRSlGgVS+doFkdAltTIZ62OQ3V9lChoBmgJaA9DCJ4GDJK+unJAlIaUUpRoFUv4aBZHQJbU0PBi1At1fZQoaAZoCWgPQwiw6NZrehVzQJSGlFKUaBVNFAFoFkdAltUFlCkXUHV9lChoBmgJaA9DCEkRGVZxgG5AlIaUUpRoFUvnaBZHQJbVAZDRc/t1fZQoaAZoCWgPQwjXMa64uAlvQJSGlFKUaBVNAAFoFkdAltXNY0VJtnV9lChoBmgJaA9DCJzEILByZW9AlIaUUpRoFUv2aBZHQJbWHsRg7YF1fZQoaAZoCWgPQwgRNjy9Uk1wQJSGlFKUaBVL/2gWR0CW1jmtyPuHdX2UKGgGaAloD0MIZavLKQHbcUCUhpRSlGgVS/poFkdAltZkfHPu5XV9lChoBmgJaA9DCKd38X5cfHBAlIaUUpRoFUvfaBZHQJbWzUQTVUd1fZQoaAZoCWgPQwhYdVYL7DZxQJSGlFKUaBVNCgFoFkdAltcDl5nlGXVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
first_attempt/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4b201c7a7d1ff30ed49a9637880c5490b58ba50acaa5efcff84daeff28c273b
3
+ size 87929
first_attempt/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09fce4dc3b96a335fb1e9c9a1f894524aa7de8e71edc0da82e1edf8a7666a23
3
+ size 43393
first_attempt/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
first_attempt/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (191 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.8221163395392, "std_reward": 20.052687720982195, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T06:24:41.412485"}