Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
datasets:
|
4 |
+
- efra
|
5 |
+
license: apache-2.0
|
6 |
+
tags:
|
7 |
+
- summarization
|
8 |
+
- flan-t5
|
9 |
+
- legal
|
10 |
+
- food
|
11 |
+
model_type: t5
|
12 |
+
pipeline_tag: text2text-generation
|
13 |
+
---
|
14 |
+
|
15 |
+
# Flan-T5 Large Fine-Tuned on EFRA Dataset
|
16 |
+
|
17 |
+
This is a fine-tuned version of [Flan-T5 XL](https://huggingface.co/google/flan-t5-xl) on the **EFRA dataset** for summarizing legal documents related to food regulations and policies.
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
Flan-T5 is a sequence-to-sequence model trained for text-to-text tasks. This fine-tuned version is specifically optimized for summarizing legal text in the domain of food legislation, regulatory requirements, and compliance documents.
|
22 |
+
|
23 |
+
### Fine-Tuning Details
|
24 |
+
- **Base Model**: [google/flan-t5-large](https://huggingface.co/google/flan-t5-large)
|
25 |
+
- **Dataset**: EFRA (a curated dataset of legal documents in the food domain)
|
26 |
+
- **Objective**: Summarization of legal documents
|
27 |
+
- **Framework**: Hugging Face Transformers
|
28 |
+
|
29 |
+
## Applications
|
30 |
+
|
31 |
+
This model is suitable for:
|
32 |
+
- Summarizing legal texts in the food domain
|
33 |
+
- Extracting key information from lengthy regulatory documents
|
34 |
+
- Assisting legal professionals and food companies in understanding compliance requirements
|
35 |
+
|
36 |
+
## Example Usage
|
37 |
+
|
38 |
+
```python
|
39 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
40 |
+
|
41 |
+
# Load the model and tokenizer
|
42 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("giuid/flan_t5_xl_summarization_v2")
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("giuid/flan_t5_xl_summarization_v2")
|
44 |
+
|
45 |
+
# Input text
|
46 |
+
input_text = "Your lengthy legal document text here..."
|
47 |
+
|
48 |
+
# Tokenize and generate summary
|
49 |
+
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
|
50 |
+
outputs = model.generate(inputs.input_ids, max_length=150, num_beams=5, early_stopping=True)
|
51 |
+
|
52 |
+
# Decode summary
|
53 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
54 |
+
print(summary)
|