import os import gc import gradio as gr import numpy as np import torch import json import spaces import config import utils import logging from PIL import Image, PngImagePlugin from datetime import datetime from diffusers.models import AutoencoderKL from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline """ Changes to base animagine-xl-3.1 log - Cut the wildcard - add in lora pipeline - use let get env variable - add in lora strenght variable """ logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) DESCRIPTION = "Animagine XL 3.1 X Galverse MAMA " if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1" HF_TOKEN = os.getenv("HF_TOKEN") CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" MIN_IMAGE_SIZE = 512 MAX_IMAGE_SIZE = 2048 USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs") MODEL = os.getenv( "MODEL", "https://huggingface.co/cagliostrolab/animagine-xl-3.1/blob/main/animagine-xl-3.1.safetensors", ) LORA_MODEL ="galverse/mama-1.5" torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def load_pipeline(model_name): vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, ) pipeline = ( StableDiffusionXLPipeline.from_single_file if MODEL.endswith(".safetensors") else StableDiffusionXLPipeline.from_pretrained ) pipe = pipeline( model_name, vae=vae, torch_dtype=torch.float16, custom_pipeline="lpw_stable_diffusion_xl", use_safetensors=True, add_watermarker=False, use_auth_token=HF_TOKEN, ) pipe.unload_lora_weights() pipe.load_lora_weights(LORA_MODEL ) #Add in lora to pipe pipe.to(device) return pipe @spaces.GPU def generate( prompt: str, negative_prompt: str = "", lora_scale: float = 1.0, #added in lora strength seed: int = 0, custom_width: int = 1024, custom_height: int = 1024, guidance_scale: float = 7.0, num_inference_steps: int = 28, sampler: str = "Euler a", aspect_ratio_selector: str = "896 x 1152", style_selector: str = "(None)", quality_selector: str = "Standard v3.1", use_upscaler: bool = False, upscaler_strength: float = 0.55, upscale_by: float = 1.5, add_quality_tags: bool = True, progress=gr.Progress(track_tqdm=True), ): generator = utils.seed_everything(seed) width, height = utils.aspect_ratio_handler( aspect_ratio_selector, custom_width, custom_height, ) prompt, negative_prompt = utils.preprocess_prompt( quality_prompt, quality_selector, prompt, negative_prompt, add_quality_tags ) prompt, negative_prompt = utils.preprocess_prompt( styles, style_selector, prompt, negative_prompt ) width, height = utils.preprocess_image_dimensions(width, height) backup_scheduler = pipe.scheduler pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler) if use_upscaler: upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components) metadata = { "prompt": prompt, "negative_prompt": negative_prompt, "resolution": f"{width} x {height}", "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "seed": seed, "sampler": sampler, "sdxl_style": style_selector, "add_quality_tags": add_quality_tags, "quality_tags": quality_selector, } #add in lora metadata["cross_attention_kwargs"] = {"scale": lora_scale} if use_upscaler: new_width = int(width * upscale_by) new_height = int(height * upscale_by) metadata["use_upscaler"] = { "upscale_method": "nearest-exact", "upscaler_strength": upscaler_strength, "upscale_by": upscale_by, "new_resolution": f"{new_width} x {new_height}", } else: metadata["use_upscaler"] = None metadata["Model"] = { "Model": DESCRIPTION, "Model hash": "e3c47aedb0", } logger.info(json.dumps(metadata, indent=4)) try: if use_upscaler: latents = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, cross_attention_kwargs={"scale": lora_scale}, #add in lora scale setting output_type="latent", ).images upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by) images = upscaler_pipe( prompt=prompt, negative_prompt=negative_prompt, image=upscaled_latents, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, strength=upscaler_strength, generator=generator, output_type="pil", ).images else: images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, cross_attention_kwargs={"scale": lora_scale}, #add in lora scale setting output_type="pil", ).images if images: image_paths = [ utils.save_image(image, metadata, OUTPUT_DIR, IS_COLAB) for image in images ] for image_path in image_paths: logger.info(f"Image saved as {image_path} with metadata") return image_paths, metadata except Exception as e: logger.exception(f"An error occurred: {e}") raise finally: if use_upscaler: del upscaler_pipe pipe.scheduler = backup_scheduler utils.free_memory() if torch.cuda.is_available(): pipe = load_pipeline(MODEL) logger.info("Loaded on Device!") else: pipe = None styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.style_list} quality_prompt = { k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.quality_prompt_list } with gr.Blocks(css="style.css", theme="NoCrypt/miku@1.2.1") as demo: title = gr.HTML( f"""

{DESCRIPTION}

""", elem_id="title", ) gr.Markdown( f"""Gradio demo for [cagliostrolab/animagine-xl-3.1](https://huggingface.co/cagliostrolab/animagine-xl-3.1)""", elem_id="subtitle", ) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Row(): with gr.Column(scale=2): with gr.Tab("Txt2img"): with gr.Group(): prompt = gr.Text( label="Prompt", max_lines=5, placeholder="Enter your prompt", ) negative_prompt = gr.Text( label="Negative Prompt", max_lines=5, placeholder="Enter a negative prompt", ) lora_scale = gr.Slider( label="lora strength", minimum=0, maximum=1.2, step=0.1, value=1, ) with gr.Accordion(label="Quality Tags", open=True): add_quality_tags = gr.Checkbox( label="Add Quality Tags", value=True ) quality_selector = gr.Dropdown( label="Quality Tags Presets", interactive=True, choices=list(quality_prompt.keys()), value="Standard v3.1", ) with gr.Tab("Advanced Settings"): with gr.Group(): style_selector = gr.Radio( label="Style Preset", container=True, interactive=True, choices=list(styles.keys()), value="(None)", ) with gr.Group(): aspect_ratio_selector = gr.Radio( label="Aspect Ratio", choices=config.aspect_ratios, value="896 x 1152", container=True, ) with gr.Group(visible=False) as custom_resolution: with gr.Row(): custom_width = gr.Slider( label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=1024, ) custom_height = gr.Slider( label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=1024, ) with gr.Group(): use_upscaler = gr.Checkbox(label="Use Upscaler", value=False) with gr.Row() as upscaler_row: upscaler_strength = gr.Slider( label="Strength", minimum=0, maximum=1, step=0.05, value=0.55, visible=False, ) upscale_by = gr.Slider( label="Upscale by", minimum=1, maximum=1.5, step=0.1, value=1.5, visible=False, ) with gr.Group(): sampler = gr.Dropdown( label="Sampler", choices=config.sampler_list, interactive=True, value="Euler a", ) with gr.Group(): seed = gr.Slider( label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0 ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Group(): with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=12, step=0.1, value=7.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) with gr.Column(scale=3): with gr.Blocks(): run_button = gr.Button("Generate", variant="primary") result = gr.Gallery( label="Result", columns=1, height='100%', preview=True, show_label=False ) with gr.Accordion(label="Generation Parameters", open=False): gr_metadata = gr.JSON(label="metadata", show_label=False) gr.Examples( examples=config.examples, inputs=prompt, outputs=[result, gr_metadata], fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs), cache_examples=CACHE_EXAMPLES, ) use_upscaler.change( fn=lambda x: [gr.update(visible=x), gr.update(visible=x)], inputs=use_upscaler, outputs=[upscaler_strength, upscale_by], queue=False, api_name=False, ) aspect_ratio_selector.change( fn=lambda x: gr.update(visible=x == "Custom"), inputs=aspect_ratio_selector, outputs=custom_resolution, queue=False, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=utils.randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=[ prompt, negative_prompt, lora_scale, seed, custom_width, custom_height, guidance_scale, num_inference_steps, sampler, aspect_ratio_selector, style_selector, quality_selector, use_upscaler, upscaler_strength, upscale_by, add_quality_tags, ], outputs=[result, gr_metadata], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)