Gabor Cselle
commited on
Commit
·
b245442
1
Parent(s):
2e58968
Adding visualize.ipynb, data_transform>RandomCrop
Browse files- .gitignore +1 -0
- train_font_identifier.py +6 -5
- visualize.ipynb +0 -0
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
font_images
|
2 |
train_test_images
|
3 |
.DS_Store
|
|
|
|
1 |
font_images
|
2 |
train_test_images
|
3 |
.DS_Store
|
4 |
+
.ipynb_checkpoints/visualize-checkpoint.ipynb
|
train_font_identifier.py
CHANGED
@@ -14,7 +14,7 @@ data_dir = './train_test_images'
|
|
14 |
# Transformations for the image data
|
15 |
data_transforms = transforms.Compose([
|
16 |
transforms.Grayscale(num_output_channels=3), # Convert images to grayscale with 3 channels
|
17 |
-
transforms.
|
18 |
transforms.ToTensor(), # Convert images to PyTorch tensors
|
19 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize with ImageNet stats
|
20 |
])
|
@@ -45,9 +45,6 @@ criterion = torch.nn.CrossEntropyLoss()
|
|
45 |
criterion = nn.CrossEntropyLoss()
|
46 |
optimizer = optim.Adam(model.parameters())
|
47 |
|
48 |
-
# Number of epochs to train for
|
49 |
-
num_epochs = 25
|
50 |
-
|
51 |
# Function to perform a training step with progress bar
|
52 |
def train_step(model, data_loader, criterion, optimizer):
|
53 |
model.train()
|
@@ -81,8 +78,12 @@ def validate(model, data_loader, criterion):
|
|
81 |
progress_bar.close()
|
82 |
return total_loss / len(data_loader), correct / len(data_loader.dataset)
|
83 |
|
|
|
|
|
|
|
|
|
84 |
# Training loop with progress bar for epochs
|
85 |
-
num_epochs =
|
86 |
for epoch in range(num_epochs):
|
87 |
print(f"Epoch {epoch+1}/{num_epochs}")
|
88 |
train_loss = train_step(model, dataloaders["train"], criterion, optimizer)
|
|
|
14 |
# Transformations for the image data
|
15 |
data_transforms = transforms.Compose([
|
16 |
transforms.Grayscale(num_output_channels=3), # Convert images to grayscale with 3 channels
|
17 |
+
transforms.RandomCrop((224, 224)), # Resize images to the expected input size of the model
|
18 |
transforms.ToTensor(), # Convert images to PyTorch tensors
|
19 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize with ImageNet stats
|
20 |
])
|
|
|
45 |
criterion = nn.CrossEntropyLoss()
|
46 |
optimizer = optim.Adam(model.parameters())
|
47 |
|
|
|
|
|
|
|
48 |
# Function to perform a training step with progress bar
|
49 |
def train_step(model, data_loader, criterion, optimizer):
|
50 |
model.train()
|
|
|
78 |
progress_bar.close()
|
79 |
return total_loss / len(data_loader), correct / len(data_loader.dataset)
|
80 |
|
81 |
+
|
82 |
+
print(image_datasets['train'].classes)
|
83 |
+
|
84 |
+
|
85 |
# Training loop with progress bar for epochs
|
86 |
+
num_epochs = 10 # Replace with the number of epochs you'd like to train for
|
87 |
for epoch in range(num_epochs):
|
88 |
print(f"Epoch {epoch+1}/{num_epochs}")
|
89 |
train_loss = train_step(model, dataloaders["train"], criterion, optimizer)
|
visualize.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|